Search Results
نشرة الممارس الصحي | نشرة معلومات المريض بالعربية | نشرة معلومات المريض بالانجليزية | صور الدواء | بيانات الدواء |
---|
Naplax® contains an active substance called dexmedetomidine which
belongs to a medicine group called sedatives. It is used to provide
sedation (a state of calm, drowsiness or sleep) for adult patients in
hospital intensive care settings or awake sedation during different
diagnostic or surgical procedures.
You must not be given Naplax®
• If you are allergic to dexmedetomidine or any of the other
ingredients of this medicine.
• If you have some disorders of heart rhythm (heart block grade 2
or 3).
• If you have very low blood pressure which does not respond to
treatment.
• If you have recently had a stroke or other serious condition affecting
blood supply to the brain.
Warnings and precautions
Talk to your doctor or nurse before you are given Naplax®.
Before you have this medicine, tell your doctor or nurse if any of
the following apply as Naplax® should be used cautiously:
• If you have an abnormally slow heart rate (either due to illness or
high levels of physical fitness) as it may increase the risk for cardiac
arrest.
• If you have low blood pressure.
• If you have low blood volume, for example after bleeding.
• If you have certain heart disorders.
• If you are elderly.
• If you have a neurological disorder (for instance head or spinal cord
injury or stroke).
• If you have severe liver problems.
• If you have ever developed a serious fever after some medicines,
especially anaesthetics.
Other medicines and Naplax®
Tell your doctor or nurse if you are taking, have recently taken or
might take any other medicines.
The following medicines may enhance the effect of Naplax®:
- medicines that help you sleep or cause sedation (e.g. midazolam,
propofol).
- strong pain medicines (e.g. opioids such as morphine, codeine).
- anaesthetic medicines (e.g. sevoflurane, isoflurane).
If you are using medicines which lower your blood pressure and
heart rate, co-administration with Naplax® may enhance this effect.
Naplax® should not be used with medicines that cause temporary
paralysis.
Pregnancy and breast-feeding
Naplax® should not be used during pregnancy or breast-feeding unless
clearly necessary.
Ask your doctor for advice before having this medicine.
Driving and using machines
Naplax® has major impact on the ability to drive and use machines.
After you have been given Naplax® you must not drive, operate
machinery, or work in dangerous situations until the effects are
completely gone. Ask your doctor when you can start doing these
activities again and when you can go back to this kind of work.
Naplax® contains sodium
This medicine contains less than 1 mmol sodium (23 mg) per mL, that
is to say essentially ‘sodium-free’.
Hospital intensive care
Naplax® is administered to you by a doctor or nurse in hospital
intensive care.
Procedural sedation/awake sedation
Naplax® is administered to you by a doctor or a nurse prior to and/
or during diagnostic or surgical procedures requiring sedation, i.e.
procedural/awake sedation.
Your doctor will decide on a suitable dose for you. The amount of
Naplax® depends on your age, size, general condition of health, the
level of sedation needed and how you respond to the medicine. Your
doctor may change your dose if needed and will monitor your heart
and blood pressure during the treatment.
Naplax® is given to you as an infusion (drip) into your veins.
After sedation/wake-up
• The doctor will keep you under medical supervision for some hours
after the sedation to make sure that you feel well.
• You should not go home unaccompanied.
• Medicines to help you sleep, cause sedation or strong painkillers
may not be appropriate for some time after you have been given
Naplax®. Talk to your doctor about the use of these medicines and
about the use of alcohol.
If you have been given more Naplax® than you should
If you are given too much Naplax®, your blood pressure may go up or
down, your heartbeat may slow down, you may breathe more slowly
and you may feel more drowsy. Your doctor will know how to treat
you based on your condition.
If you have any further questions on the use of this medicine, ask
your doctor.
Like all medicines, this medicine can cause side effects, although not
everybody gets them.
Very common (affects more than 1 user in 10)
• Slow heart rate.
• Low or high blood pressure.
• Change in breathing pattern or stopping breathing.
Common (affects 1 to 10 users in 100)
• Chest pain or heart attack.
• Fast heart rate.
• Low or high blood sugar.
• Nausea, vomiting or dry mouth.
• Restlessness.
• High temperature.
• Symptoms after stopping the medicine.
Uncommon (affects 1 to 10 users in 1000)
- Reduced heart function, cardiac arrest.
- Swelling of the stomach.
- Thirst.
- A condition where there is too much acid in the body.
- Low albumin level in blood.
- Shortness of breath.
- Hallucinations.
- The medicine is not effective enough.
Not known (frequency cannot be estimated from the available
data)
- Increased need to pass urine.
If you get any side effects, talk to your doctor or nurse. This
includes any possible side effects not listed in this leaflet.
Keep out of the reach and sight of children.
Do not use Naplax® solution after the expiry date (EXP) which is
stated on the label and the carton.
The expiry date refers to the last day of that month.
Naplax® solution: Store below 30°C.
Medicines should not be disposed of via wastewater or household
waste. Ask your pharmacist how to dispose of medicines no longer
required. These measures will help to protect the environment.
The active substance is dexmedetomidine. Each mL of solution
contains dexmedetomidine hydrochloride equivalent to 4 micrograms
dexmedetomidine.
The other ingredients are sodium chloride and water for injections.
MAH:Med City Pharma- KSA
Tel: 00966920003288
Fax: 00966126358138
Mobile: 00966555786968
P.O .Box: 42512 - Jeddah 21551
E-mail: MD.admin@Axantia.com
Manufactured by:
S.M. FARMACEUTICI S.R.L.- Italy
This leaflet does not contain all the information about your medicine.
If you have any questions or are not sure about anything, ask your doctor or pharmacist.
يحتوي نابلاكس على مادة فعالة تسمى ديكسميديتوميدين والتي تنتمي إلى مجموعة أدوية تسمى المهدئات. يتم استعماله لتوفير التخدير )حالة من الهدوء أو النعاس أو النوم( للمرضى البالغين في أماكن العناية المركزة بالمستشفى أو
التخدير المستيقظ أثناء الإجراءات التشخيصية أو الجراحية المختلفة.
® يجب عدم استعمال نابلاكس
• إذا كان لديك حساسية تجاه ديكسميديتوميدين أو لأي من المكونات الأخرى لهذا الدواء.
• إذا كنت تعاني من بعض اضطرابات نظم القلب )احصار القلب من الدرجة 2.) أو 3
• إذا كنت تعاني من انخفاض شديد في ضغط الدم ولا يستجيب للعلاج.
• إذا كنت قد أصبت مؤخرًا بسكتة دماغية أو حالة خطيرة أخرى تؤثر على إمداد الدماغ بالدم.
المحاذير والاحتياطات
® تحدث إلى طبيبك أو الممرض قبل إعطائك نابلاكس
قبل أخذ هذا الدواء، أخبر طبيبك أو الممرض إذا كان أي مما يلي ينطبق عليك حيث يجب استعمال نابلاكس بحذر:
• إذا كان معدل ضربات قلبك بطيئًا بشكل غير طبيعي )إما بسبب المرض أو ارتفاع مستويات اللياقة البدنية( فقد يزيد ذلك من خطر الإصابة بالسكتة القلبية.
• إذا كان لديك ضغط دم منخفض.
• إذا كان لديك انخفاض في حجم الدم، على سبيل المثال بعد النزيف.
• إذا كنت تعاني من بعض اضطرابات القلب.
• إذا كنت مسناً.
• إذا كنت تعاني من اضطراب عصبي )على سبيل المثال إصابة في الرأس أو النخاع الشوكي أو سكتة دماغية(.
• إذا كنت تعاني من مشاكل خطيرة في الكبد.
• إذا كنت قد أصبت بحمى خطيرة بعد تناول بعض الأدوية، وخاصة أدوية
التخدير.
® أدوية أخرى مع نابلاكس
أخبر طبيبك أو الممرض إذا كنت تتناول أو تناولت مؤخرًا أو قد تتناول أي أدوية أخرى.
:® الأدوية التالية قد تعزز تأثير نابلاكس
- الأدوية التي تساعدك على النوم أو تسبب التهدئة )مثل ميدازولام، بروبوفول(.
- أدوية الألم القوية )مثل المواد الأفيونية مثل المورفين والكوديين(.
- أدوية التخدير )مثل سيفوفلوران، إيزوفلورين(.
إذا كنت تستخدم أدوية تخفض ضغط الدم ومعدل ضربات القلب، فإن الاعطاء المشترك مع نابلاكس قد يعزز هذا التأثير. يجب عدم استعمال نابلاكس مع الأدوية التي تسبب شللً مؤقتًا.
الحمل والرضاعة
يجب عدم استعمال نابلاكسأثناء الحمل أو الرضاعة ما لم يكن ذلك ضروريًا بشكل واضح.
استشر طبيبك قبل تناول هذا الدواء.
القيادة واستخدام الآلات
® نابلاكس له تأثير كبير على القدرة على القيادة واستخدام الآلات.
بعد أن يتم إعطاؤك نابلاكس
يجب عليك عدم القيادة أو تشغيل الآلات أو العمل في مواقف خطرة حتى تختفي الآثار تمامًا.
اسأل طبيبك متى يمكنك البدء في القيام بهذه الأنشطة مرة أخرى ومتى يمكنك العودة إلى هذا النوع من العمل.
يحتوي نابلاكس على الصوديوم
يحتوي هذا الدواء على أقل من 1 مليمول صوديوم ) 23 ملغم( لكل مل، وهذا يعني بشكل أساسي “خالٍ من الصوديوم”.
® يتم إعطاء نابلاكس لك من قبل طبيب أو ممرضة في العناية المركزة بالمستشفى.
التخدير الإجرائي/التخدير المستيقظ
® يتم إعطاء نابلاكس لك من قبل الطبيب أو الممرض قبل و/أو أثناء الإجراءات التشخيصية أو الجراحية التي تتطلب التخدير، أي التخدير الإجرائي/اليقظ.
سيقرر طبيبك الجرعة المناسبة لك. تعتمد كمية نابلاكس على عمرك وحجمك
وحالتك الصحية العامة ومستوى التخدير المطلوب وكيفية استجابتك للدواء. قد
يغير طبيبك جرعتك إذا لزم الأمر وسيقوم بمراقبة قلبك وضغط دمك أثناء العلاج.
يتم إعطاؤك نابلاكس على شكل تسريب )بالتنقيط( في عروقك.
بعد التهدئة/الاستيقاظ
• سيبقيك الطبيب تحت إشراف طبي لعدة ساعات بعد التخدير للتأكد من أنك على
ما يرام.
• يجب ألا تعود إلى المنزل بدون مرافق.
• الأدوية التي تساعدك على النوم، والتسبب في التهدئة أو المسكنات القوية قد لا تكون مناسبة لبعض الوقت بعد تناولك نابلاكس
تحدث إلى طبيبك حول استعمال هذه الأدوية وعن استعمال الكحول.
إذا تم إعطاؤك نابلاكس أكثر مما يجب
إذا تم إعطاؤك الكثير من نابلاكس فقد يرتفع ضغط دمك أو ينخفض، وقد يتباطأ نبض __________قلبك، وقد تتنفس ببطء أكثر وقد تشعر بمزيد من النعاس. سيعرف طبيبك كيف يعالجك بناءً على حالتك.
إذا كانت لديك أي أسئلة أخرى حول استعمال هذا الدواء، فاسأل طبيبك.
مثل جميع الأدوية، يمكن أن يسبب هذا الدواء آثارًا جانبية، على الرغم من عدم
حدوثها لدى الجميع.
شائعة جدًا )يؤثر على أكثر من مستخدم واحد من كل 10 مستخدمين(
• بطء معدل ضربات القلب.
• انخفاض أو ارتفاع ضغط الدم.
• تغير في نمط التنفس أو توقف التنفس.
شائعة )يؤثر على 1 إلى 10 مستخدمين من كل 100 مستخدم(
• ألم في الصدر أو نوبة قلبية.
• سرعة دقات القلب.
• انخفاض أو ارتفاع نسبة السكر في الدم.
• الغثيان والقيء وجفاف الفم.
• القلق.
• درجة حرارة عالية.
• الأعراض بعد التوقف عن تناول الدواء.
غير شائعة )يؤثر على 1 إلى 10 مستخدمين من كل 1000 مستخدم(
• ضعف وظائف القلب، توقف القلب.
• انتفاخ المعدة.
• عطش.
• حالة يوجد فيها الكثير من الأحماض في الجسم.
• انخفاض مستوى الألبومين في الدم.
• ضيق في التنفس.
• الهلوسة.
• الدواء غير فعال بما فيه الكفاية.
غير معروفة )لا يمكن تقدير تكرار حدوثها من المعلومات المتوفرة(
• زيادة الحاجة إلى التبول.
إذا عانيت من أي آثار جانبية، فتحدث إلى طبيبك أو الممرض. هذا يشمل أي آثار
جانبية محتملة غير مذكورة في هذه النشرة.
يحفظ بعيدا عن متناول ونظر الأطفال.
لا تستخدم محلول نابلاكس المدون على الملصق والعلبة. بعد تاريخ انتهاء الصلاحية )EXP(
يشير تاريخ انتهاء الصلاحية إلى اليوم الأخير من نفس الشهر.
محلول نابلاكس يحفظ في درجة حرارة دون 30 °م. :
يجب عدم التخلص من الأدوية في مياه الصرف الصحي أو النفايات المنزلية.
اسأل الصيدلي عن كيفية التخلص من الأدوية التي لم تعد مطلوبة. ومن شأن هذه التدابير أن تساعد على حماية البيئة.
المادة الفعالة هي ديكسميديتوميدين. يحتوي كل 1 مل من المحلول على
ديكسميديتوميدين هيدروكلوريد ما يعادل ٤ ميكروغرام ديكسميديتوميدين.
المكونات الأخرى هي كلوريد الصوديوم والماء للحقن.
محلول للحقن الوريدي البطيء.
المحلول شفاف وعديم اللون.
.I معبأ في عبوات زجاجية عديمة اللون سعة 50 مل نوع ® نابلاكس
يتم إغلاق العبوات بسدادة ومختومة بغطاء.
حجم العبوة:
عبوة واحدة ) 50 مل عبوة للاستعمال لمرة واحدة معبأة في عبوات كرتونية(.
للإبلاغ عن أي أعراض جانبية:
• المملكة العربية السعودية:
المركز الوطني للتيقظ الدوائي:
مركز الاتصال الموحد: 19999
npc.drug@sfda.gov.sa : البريد الالكتروني
https://ade.sfda.gov.sa : الموقع الالكتروني
• دول الخليج العربي الأخرى:
الرجاء الاتصال بالجهات الوطنية في كل دولة.
مالك رخصة التسويق:
مدينة الدواء للصناعات الدوائية- المملكة العربية السعودية.
هاتف: 00966920003288
فاكس: 00966126358138
جوال: 00966555786968
ص.ب: 42512 - جدة 21551
MD.admin@Axantia.com: بريد الكتروني
تصنيع:
شركة س.م فارماسيوتيكي س.آر.إل - إيطاليا.
لا تحتوي هذه النشرة على جميع المعلومات عن دوائك. إذا كانت لديك أي أسئلة
أو لم تكن متأكدًا من أي شيء، فاسأل طبيبك أو الصيدلاني.
For sedation of adult ICU (Intensive Care Unit) patients requiring a sedation level not deeper than arousal in response to verbal stimulation (corresponding to Richmond Agitation-Sedation Scale (RASS) 0 to -3).
For sedation of non-intubated adult patients prior to and/or during diagnostic or surgical procedures requiring sedation, i.e., procedural/awake sedation.
For sedation of adult ICU (Intensive Care Unit) patients requiring a sedation level not deeper than arousal in response to verbal stimulation (corresponding to Richmond Agitation-Sedation Scale (RASS) 0 to -3).
For hospital use only. Naplax® should be administered by healthcare professionals skilled in the management of patients requiring intensive care.
Posology
Patients already intubated and sedated may switch to dexmedetomidine with an initial infusion rate of 0.7 micrograms/kg/h which may then be adjusted stepwise within the dose range 0.2 to 1.4 micrograms/kg/h in order to achieve the desired level of sedation, depending on the patient’s response. A lower starting infusion rate should be considered for frail patients. Dexmedetomidine is very potent and the infusion rate is given per hour. After dose adjustment, a new steady state sedation level may not be reached for up to one hour.
Maximum dose
The maximum dose of 1.4 micrograms/kg/h should not be exceeded. Patients failing to achieve an adequate level of sedation with the maximum dose of dexmedetomidine should be switched to an alternative sedative agent.
Use of a loading dose of Naplax® in ICU sedation is not recommended and is associated with increased adverse reactions. Propofol or midazolam may be administered if needed until clinical effects of dexmedetomidine are established.
Duration
There is no experience in the use of Naplax® for more than 14 days. The use of Naplax® for longer than this period should be regularly reassessed.
For sedation of non-intubated adult patients prior to and/or during diagnostic or surgical procedures requiring sedation, i.e., procedural/awake sedation.
Naplax® should be administered only by health care professionals skilled in the anaesthetic management of patients in the operating room or during diagnostic procedures. When Naplax® is administered for conscious sedation, patients should be continuously monitored by persons not involved in the conduct of the diagnostic or surgical procedure. Patients should be monitored continuously for early signs of hypotension, hypertension, bradycardia, respiratory depression, airway obstruction, apnoea, dyspnoea and/or oxygen desaturation (see section 4.8).
Supplemental oxygen should be immediately available and provided when indicated. The oxygen saturation should be monitored by pulse oximetry.
Naplax® is given as a loading infusion followed by maintenance infusion. Depending on the procedure concomitant local anaesthesia or analgesia may be needed in order to achieve the desired clinical effect. Additional analgesia or sedatives (e.g., opioids, midazolam, or propofol) are recommended in case of painful procedures or if increased depth of sedation is necessary. The pharmacokinetic distribution half –life of dexmedetomidine has been estimated to be around 6 min, which can be taken into consideration, together with the effects of other administered medications, when assessing the appropriate time needed for titration to desired clinical effect of dexmedetomidine.
Initiation of Procedural Sedation:
A loading infusion of 1.0 microgram/kg over 10 minutes. For less invasive procedures such as ophthalmic surgery, a loading infusion of 0.5 micrograms/kg given over 10 minutes may be suitable.
Maintenance of Procedural Sedation:
The maintenance infusion is generally initiated at 0.6-0.7 microgram/kg/hour and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 microgram/kg/hour. The rate of the maintenance infusion should be adjusted to achieve the targeted level of sedation.
Special populations
Elderly
No dose adjustment is normally required for elderly patients (see section 5.2). Elderly patients appear to have an increased risk for hypotension (see section 4.4) but the limited data available from procedural sedation do not suggest a clear dose dependency.
Renal impairment
No dose adjustment is required for patients with renal impairment.
Hepatic impairment
Dexmedetomidine is metabolised in the liver and should be used with caution in patients with hepatic impairment. A reduced maintenance dose may be considered (see sections 4.4 and 5.2).
Paediatric population
The safety and efficacy of dexmedetomidine in children aged 0 to 18 years have not been established. Currently available data are described in sections 4.8, 5.1 and 5.2 but no recommendation on a posology can be made.
Method of administration
Naplax® should not be diluted before use: it is supplied ready to use. Should not be mixed with other medicines.
Dexmedetomidine must be administered only as an intravenous infusion using a controlled infusion device.
Dexmedetomidine should not be given as a bolus dose. For General precautions, see section 4.4.
Monitoring
Naplax® is intended for use in an intensive care setting, operating room and during diagnostic procedures. The use in other environments is not recommended. All patients should have continuous cardiac monitoring during Naplax® infusion. Respiration should be monitored in non-intubated patients due to the risk of respiratory depression and in some case apnoea (see section 4.8).
The time to recovery after the use of dexmedetomidine was reported to be approximately one hour. When used in an outpatient setting close monitoring should continue for at least one hour (or longer based on the patient condition), with medical supervision continued for at least one further hour to ensure the safety of the patient.
General precautions
Naplax® should not be given as a bolus dose and in the ICU a loading dose is not recommended. Users should therefore be ready to use an alternative sedative for acute control of agitation or during procedures, especially during the first few hours of treatment. During procedural sedation a small bolus of another sedative may be used if a rapid increase in sedation level is required.
Some patients receiving dexmedetomidine have been observed to be arousable and alert when stimulated. This alone should not be considered as evidence of lack of efficacy in the absence of other clinical signs and symptoms.
Dexmedetomidine normally does not cause deep sedation and patients may be easily roused. Dexmedetomidine is therefore not suitable in patients who will not tolerate this profile of effects, for example those requiring continuous deep sedation.
Naplax® should not be used as a general anaesthetic induction agent for intubation or to provide sedation during muscle relaxant use.
Dexmedetomidine lacks the anticonvulsant action of some other sedatives and so will not suppress underlying seizure activity.
Care should be taken if combining dexmedetomidine with other substances with sedative or cardiovascular actions as additive effects may occur.
Naplax® is not recommended for patient controlled sedation. Adequate data is not available.
When Naplax® is used in an outpatient setting patients should normally be discharged into the care of a suitable third party. Patients should be advised to refrain from driving or other hazardous tasks and where possible to avoid the use of other agents that may sedate (e.g., benzodiazepines, opioids, alcohol) for a suitable period of time based on observed effects of dexmedetomidine, the procedure, concomitant medications, the age and the condition of the patient.
Caution should be exercised when administering dexmedetomidine to elderly patients. Elderly patients over 65 years of age may be more prone to hypotension with the administration of dexmedetomidine, including a loading dose, for procedures. A dose reduction should be considered. Please refer to section 4.2.
Cardio-vascular effects and precautions
Dexmedetomidine reduces heart rate and blood pressure through central sympatholysis but at higher concentrations causes peripheral vasoconstriction leading to hypertension (see section 5.1). Dexmedetomidine is therefore not suitable in patients with severe cardiovascular instability.
Caution should be exercised when administering dexmedetomidine to patients with pre-existing bradycardia. Data on the effects of dexmedetomidine in patients with heart rate <60 are very limited and particular care should be taken with such patients. Bradycardia does not normally require treatment but has commonly responded to anti-cholinergic medicine or dose reduction where needed. Patients with high physical fitness and slow resting heart rate may be particularly sensitive to bradycardic effects of alpha-2 receptor agonists and cases of transient sinus arrest have been reported. Also, cases of cardiac arrest, often preceded by bradycardia or atrioventricular block, have been reported (see section 4.8).
The hypotensive effects of dexmedetomidine may be of greater significance in those patients with pre-existing hypotension (especially if not responsive to vasopressors), hypovolaemia, chronic hypotension or reduced functional reserve such as patients with severe ventricular dysfunction and the elderly and special care is warranted in these cases (see section 4.3). Hypotension does not normally require specific treatment but, where needed, users should be ready to intervene with dose reduction, fluids and/or vasoconstrictors.
Patients with impaired peripheral autonomic activity (e.g., due to spinal cord injury) may have more pronounced haemodynamic changes after starting dexmedetomidine and so should be treated with care.
Transient hypertension has been observed primarily during the loading dose in association with the peripheral vasoconstrictive effects of dexmedetomidine and a loading dose is not recommended in ICU sedation. Treatment of hypertension has generally not been necessary but decreasing the continuous infusion rate may be advisable.
Local vasoconstriction at higher concentration may be of greater significance in patients with ischaemic heart disease or severe cerebrovascular disease who should be monitored closely. Dose reduction or discontinuation should be considered in a patient developing signs of myocardial or cerebral ischaemia.
Caution is advised when administering dexmedetomidine together with spinal or epidural anaesthesia due to possible increased risk of hypotension or bradycardia.
Patients with hepatic impairment
Care should be taken in severe hepatic impairment as excessive dosing may increase the risk of adverse reactions, over-sedation or prolonged effect as a result of reduced dexmedetomidine clearance.
Patients with neurological disorders
Experience of dexmedetomidine in severe neurological disorders such as head injury and after neurosurgery is limited and it should be used with caution here, especially if deep sedation is required. Dexmedetomidine may reduce cerebral blood flow and intracranial pressure, and this should be considered when selecting therapy.
Other
Alpha-2 agonists have rarely been associated with withdrawal reactions when stopped abruptly after prolonged use. This possibility should be considered if the patient develops agitation and hypertension shortly after stopping dexmedetomidine.
Dexmedetomidine may induce hyperthermia that may be resistant to traditional cooling methods. Dexmedetomidine treatment should be discontinued in the event of a sustained unexplained fever and is not recommended for use in malignant hyperthermia-sensitive patients.
Naplax® contains sodium
This medicine contains less than 1 mmol sodium (23 mg) per mL, that is to say essentially ‘sodium-free’.
Interaction studies have only been performed in adults.
Co-administration of dexmedetomidine with anaesthetics, sedatives, hypnotics, and opioids is likely to lead to an enhancement of effects, including sedative, anaesthetic and cardiorespiratory effects. Specific studies have confirmed enhanced effects with isoflurane, propofol, alfentanil, and midazolam.
No pharmacokinetic interactions between dexmedetomidine and isoflurane, propofol, alfentanil and midazolam have been demonstrated. However, due to possible pharmacodynamic interactions, when co-administered with dexmedetomidine, a reduction in dosage of dexmedetomidine or the concomitant anaesthetic, sedative, hypnotic or opioid may be required.
Inhibition of CYP enzymes including CYP2B6 by dexmedetomidine has been studied in human liver microsome incubations. In vitro study suggests that interaction potential in vivo exists between dexmedetomidine and substrates with dominant CYP2B6 metabolism.
Induction of dexmedetomidine in vitro was observed on CYP1A2, CYP2B6, CYP2C8, CYP2C9 and CYP3A4, and induction in vivo cannot be excluded. The clinical significance is unknown.
The possibility of enhanced hypotensive and bradycardic effects should be considered in patients receiving other medicinal products causing these effects, for example beta blockers, although additional effects in an interaction study with esmolol were modest.
Pregnancy
There are no or limited amount of data from the use of dexmedetomidine in pregnant women.
Studies in animals have shown reproductive toxicity (see section 5.3). Naplax® should not be used during pregnancy unless the clinical condition of the woman requires treatment with dexmedetomidine.
Breastfeeding
Dexmedetomidine is excreted in human milk, however levels will be below the limit of detection by 24 hours following treatment discontinuation. A risk to infants cannot be excluded. A decision must be made whether to discontinue breastfeeding or to discontinue dexmedetomidine therapy taking into account the benefit of breastfeeding for the child and the benefit of therapy for the woman.
Fertility
In the rat fertility study, dexmedetomidine had no effect on male or female fertility. No human data on fertility are available.
Patients should be advised to refrain from driving or other hazardous tasks for a suitable period of time after receiving Naplax® for procedural sedation.
Summary of the safety profile
Sedation of adult ICU (Intensive Care Unit) patients
The most frequently reported adverse reactions with dexmedetomidine in ICU setting are hypotension, hypertension and bradycardia, occurring in approximately 25%, 15% and 13% of patients respectively.
Hypotension and bradycardia were also the most frequent dexmedetomidine-related serious adverse reactions occurring in 1.7% and 0.9% of randomised Intensive Care Unit (ICU) patients respectively.
Procedural/awake sedation
The most frequently reported adverse reactions with dexmedetomidine in procedural sedation are listed below (the protocols of phase III studies contained pre-defined thresholds for reporting changes in blood pressure, respiratory rate and heart rate as AEs).
- Hypotension (55% in dexmedetomidine-group vs. 30% in placebo-group receiving rescue midazolam and fentanyl)
- Respiratory depression (38% in dexmedetomidine-group vs. 35% in placebo-group receiving rescue midazolam and fentanyl)
- Bradycardia (14% in dexmedetomidine-group vs. 4% in placebo-group receiving rescue midazolam and fentanyl)
Tabulated list of adverse reactions
The adverse reactions listed in Table 1 have been accumulated from pooled data of clinical trials in intensive care.
Adverse reactions are ranked under headings of frequency, the most frequent first, using the following convention: Very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1 000 to <1/100); rare (≥1/10 000 to <1/1 000); very rare (<1/10 000).
Table 1. Adverse reactions
Metabolism and nutrition disorders | |
Common: | Hyperglycaemia, hypoglycaemia |
Uncommon: | Metabolic acidosis, hypoalbuminaemia |
| |
Psychiatric disorders | |
Common: | Agitation |
Uncommon: | Hallucination |
| |
Cardiac disorders | |
Very common: | Bradycardia1,2 |
Common: | Myocardial ischaemia or infarction, tachycardia |
Uncommon: | Atrioventricular block1, cardiac output decreased, cardiac arrest1 |
| |
Vascular disorders | |
Very common: | Hypotension1,2, hypertension1,2 |
| |
Respiratory, thoracic and mediastinal disorders | |
Very common: | Respiratory depression2,3 |
Uncommon: | Dyspnoea, apnoea |
| |
Gastrointestinal disorders | |
Common: | Nausea2, vomiting, dry mouth2 |
Uncommon: | Abdominal distension |
| |
Renal and urinary disorders | |
Not known: | Polyuria |
| |
General disorders and administration site conditions | |
Common: | Withdrawal syndrome, hyperthermia |
Uncommon: | Drug ineffective, thirst |
1 See section on Description of selected adverse reactions
2 Adverse reaction observed also in procedural sedation studies
3 Incidence ‘common’ in ICU sedation studies
Description of selected adverse reactions
Clinically significant hypotension or bradycardia should be treated as described in section 4.4.
In relatively healthy non-ICU subjects treated with dexmedetomidine, bradycardia has occasionally led to sinus arrest or pause. The symptoms responded to leg raising and anticholinergics such as atropine or glycopyrrolate. In isolated cases bradycardia has progressed to periods of asystole in patients with pre-existing bradycardia. Also, cases of cardiac arrest, often preceded by bradycardia or atrioventricular block, have been reported.
Hypertension has been associated with the use of a loading dose and this reaction can be reduced by avoiding such a loading dose or reducing the infusion rate or size of the loading dose.
Paediatric population
Children > 1 month post-natal, predominantly post-operative, have been evaluated for treatment up to 24 hours in the ICU and demonstrated a similar safety profile as in adults. Data in new-born infants (28 – 44 weeks gestation) is very limited and restricted to maintenance doses ≤ 0.2 mcg/kg/h. A single case of hypothermic bradycardia in a neonate has been reported in the literature.
To report any side effect(s):
• Saudi Arabia:
The National Pharmacovigilance Center (NPC):
SFDA Call Center: 19999
E-mail: npc.drug@sfda.gov.sa
Website: https://ade.sfda.gov.sa
• Other GCC States:
Please contact the relevant competent authority.
Symptoms
Several cases of dexmedetomidine overdose have been reported both in the clinical trial and the post-marketing data. The reported highest infusion rates of dexmedetomidine in these cases have reached up to 60 µg/kg/h for 36 minutes and 30 µg/kg/h for 15 minutes in a 20-month-old child and in an adult, respectively. The most common adverse reactions reported in conjunction with overdose include bradycardia, hypotension, hypertension, oversedation, respiratory depression and cardiac arrest.
Management
In cases of overdose with clinical symptoms, dexmedetomidine infusion should be reduced or stopped. Expected effects are primarily cardiovascular and should be treated as clinically indicated (see section 4.4). At high concentration hypertension may be more prominent than hypotension. In clinical studies, cases of sinus arrest reversed spontaneously or responded to treatment with atropine and glycopyrrolate. Resuscitation was required in isolated cases of severe overdose resulting in cardiac arrest.
Pharmacotherapeutic group: Psycholeptics, other hypnotics and sedatives, ATC code: N05CM18
Dexmedetomidine is a selective alpha-2 receptor agonist with a broad range of pharmacological properties. It has a sympatholytic effect through decrease of the release of noradrenaline in sympathetic nerve endings. The sedative effects are mediated through decreased firing of locus coeruleus, the predominant noradrenergic nucleus, situated in the brainstem. Dexmedetomidine has analgesic and anaesthetic/analgesic-sparing effects. The cardiovascular effects depend on the dose; with lower infusion rates the central effects dominate leading to decrease in heart rate and blood pressure. With higher doses, peripheral vasoconstricting effects prevail leading to an increase in systemic vascular resistance and blood pressure, while the bradycardic effect is further emphasised. Dexmedetomidine is relatively free from respiratory depressive effects when given as monotherapy to healthy subjects.
Sedation of adult ICU (Intensive Care Unit) patients
In placebo-controlled trials in a post-operative ICU population previously intubated and sedated with midazolam or propofol, dexmedetomidine significantly reduced the requirement for both rescue sedative (midazolam or propofol) and opioids during sedation for up to 24 hours. Most dexmedetomidine patients required no additional sedative treatment. Patients could be successfully extubated without stopping the dexmedetomidine infusion. Studies from outside the ICU have confirmed that dexmedetomidine can be administered safely to patients without endotracheal intubation provided adequate monitoring is in place.
Dexmedetomidine was similar to midazolam (Ratio 1.07; 95% CI 0.971, 1.176) and propofol (Ratio 1.00; 95% CI 0.922, 1.075) on the time in target sedation range in a predominantly medical population requiring prolonged light to moderate sedation (RASS 0 to -3) in the ICU for up to 14 days, reduced the duration of mechanical ventilation compared to midazolam and reduced the time to extubation compared to midazolam and propofol. Compared to both propofol and midazolam, patients were more easily roused, more cooperative and better able to communicate whether or not they had pain. Dexmedetomidine treated patients had more frequent hypotension and bradycardia but less tachycardia than those receiving midazolam and more frequent tachycardia but similar hypotension to propofol treated patients. Delirium measured by the CAM-ICU scale was reduced in a study compared to midazolam and delirium-related adverse events were lower on dexmedetomidine compared to propofol.
Those patients who withdrew due to insufficient sedation were switched to either propofol or midazolam. The risk of insufficient sedation was increased in patients who were difficult to sedate with standard care immediately prior to switching.
Evidence of paediatric efficacy was seen in a dose-controlled ICU study in a largely post-operative population aged 1 month to ≤ 17 years. Approximately 50% of patients treated with dexmedetomidine did not require rescue addition of midazolam during a median treatment period of 20.3 hours, not exceeding 24 hours. Data on treatment for > 24 hours is not available. Data in new-born infants (28 – 44 weeks gestation) is very limited and restricted to low doses (≤ 0.2 mcg/kg/h) (see sections 5.2 and 4.4). New-born infants may be particularly sensitive to the bradycardic effects of dexmedetomidine in the presence of hypothermia and in conditions of heart rate-dependent cardiac output.
In double blind comparator-controlled ICU studies the incidence of cortisol suppression in patients treated with dexmedetomidine (n=778) was 0.5% compared with 0% in patients treated with either midazolam (n=338) or propofol (n=275). The event was reported as mild in 1 and moderate in 3 cases.
Procedural/awake sedation
The safety and efficacy of dexmedetomidine for sedation of non-intubated patients prior to and/or during surgical and diagnostic procedures was evaluated in two randomised, double-blind, placebo-controlled multicentre clinical trials.
· Study 1 randomised patients undergoing elective surgeries/procedures under monitored anaesthesia care and local/regional anaesthesia to receive a loading infusion of dexmedetomidine either 1 µg/kg (n=129) or 0.5 µg/kg (n=134), or placebo (normal saline; n=63) given over 10 minutes and followed by a maintenance infusion started at 0.6 µg/kg/h. The maintenance infusion of study drug could be titrated from 0.2 µg/kg/h to 1 µg/kg/h. The proportion of patients that achieved the targeted sedation level (Observer’s Assessment of Alertness/Sedation Scale ≤4) without need for rescue midazolam was 54% of the patients receiving dexmedetomidine 1 µg/kg and 40% of the patients receiving dexmedetomidine 0.5 µg/kg compared to 3% of patients receiving the placebo. The risk difference in proportion of subjects randomised to dexmedetomidine 1 μg/kg group and dexmedetomidine 0.5 μg/kg group not requiring rescue midazolam was 48% (95% CI: 37% - 57%) and 40% (95% CI: 28% - 48%), respectively compared placebo. The median (range) midazolam rescue dose was 1.5 (0.5-7.0) mg in the dexmedetomidine1.0 µg/kg group, 2.0 (0.5-8.0) mg in the dexmedetomidine 0.5 µg/kg group, and 4.0 (0.5-14.0) mg in the placebo group. The difference in means in dose of rescue midazolam in dexmedetomidine 1 μg/kg and dexmedetomidine 0.5 μg/kg group compared to placebo was -3.1 mg (95% CI: -3.8 - -2.5) and -2.7 mg (95% CI: -3.3 - -2.1), respectively favouring dexmedetomidine. The median time to first rescue dose was 114 minutes in the dexmedetomidine 1.0 µg/kg group, 40 minutes in the dexmedetomidine 0.5 µg/kg group, and 20 minutes in the placebo group.
· Study 2 randomised patients undergoing awake fibreoptic intubation under topical anaesthesia to receive a loading infusion of dexmedetomidine 1 µg/kg (n=55) or placebo (normal saline) (n=50) given over 10 minutes and followed by a fixed maintenance infusion of 0.7 µg/kg/h. To maintain a Ramsay Sedation Scale ≥2 53% of the patients receiving dexmedetomidine did not require midazolam rescue vs. 14% of patients receiving placebo. The risk difference in proportion of subjects randomised to dexmedetomidine not requiring rescue midazolam was 43% (95% CI: 23% - 57%) compared placebo. The mean midazolam rescue dose was 1.1 mg in the dexmedetomidine group, and 2.8 mg in the placebo group. The difference in means in dose of rescue midazolam was -1.8 mg (95% CI: -2.7 - -0.86) favouring dexmedetomidine.
The pharmacokinetics of dexmedetomidine has been assessed following short-term IV administration in healthy volunteers and long-term infusion in ICU population.
Distribution
Dexmedetomidine exhibits a two-compartment disposition model. In healthy volunteers it exhibits a rapid distribution phase with a central estimate of the distribution half-life (t1/2α) of about 6 minutes. The mean estimate of the terminal elimination half-life (t1/2) is approximately 1.9 to 2.5 h (min 1.35, max 3.68 h) and the mean estimate of the steady-state volume of distribution (Vss) is approximately 1.16 to 2.16 l/kg (90 to 151 litres). Plasma clearance (Cl) has a mean estimated value of 0.46 to 0.73 l/h/kg (35.7 to 51.1 l/h). The mean body weight associated with these Vss and Cl estimates was 69 kg. Plasma pharmacokinetics of dexmedetomidine is similar in the ICU population following infusion >24 h. The estimated pharmacokinetic parameters are: t1/2 approximately 1.5 hours, Vss approximately 93 litres and Cl approximately 43 l/h. The pharmacokinetics of dexmedetomidine is linear in the dosing range from 0.2 to 1.4 µg/kg/h and it does not accumulate in treatments lasting up to 14 days. Dexmedetomidine is 94% bound to plasma proteins. Plasma protein binding is constant over the concentration range of 0.85 to 85 ng/mL. Dexmedetomidine binds to both human serum albumin and Alpha-1-acid glycoprotein with serum albumin as the major binding protein of dexmedetomidine in plasma.
Biotransformation and Elimination
Dexmedetomidine is eliminated by extensive metabolism in the liver. There are three types of initial metabolic reactions; direct N-glucuronidation, direct N-methylation and cytochrome P450 catalysed oxidation. The most abundant circulating dexmedetomidine metabolites are two isomeric Nglucuronides. Metabolite H-1, N-methyl 3-hydroxymethyl dexmedetomidine O-glucuronide, is also a major circulating product of dexmedetomidine biotransformation. Cytochrome P-450 catalyses the formation of two minor circulating metabolites, 3-hydroxymethyl dexmedetomidine produced by hydroxylation at the 3-methyl group of dexmedetomidine and H-3 produced by oxidation in the imidazole ring. Available data suggest that the formation of the oxidised metabolites is mediated by several CYP forms (CYP2A6, CYP1A2, CYP2E1, CYP2D6 and CYP2C19). These metabolites have negligible pharmacological activity.
Following IV administration of radiolabeled dexmedetomidine an average 95% of radioactivity was recovered in the urine and 4% in the faeces after nine days. The major urinary metabolites are the two isomeric N-glucuronides, which together accounted for approximately 34% of the dose and N-methyl 3-hydroxymethyl dexmedetomidine O-glucuronide that accounted for 14.51% of the dose. The minor metabolites dexmedetomidine carboxylic acid, 3-hydroxymethyl dexmedetomidine and its Oglucuronide individually comprised 1.11 to 7.66% of the dose. Less than 1% of unchanged parent drug was recovered in the urine. Approximately 28% of the urinary metabolites are unidentified minor metabolites.
Special populations
No major pharmacokinetic differences have been observed based on gender or age.
Dexmedetomidine plasma protein binding is decreased in subjects with hepatic impairment compared with healthy subjects. The mean percentage of unbound dexmedetomidine in plasma ranged from 8.5% in healthy subjects to 17.9% in subjects with severe hepatic impairment. Subjects with varying degrees of hepatic impairment (Child-Pugh Class A, B, or C) had decreased hepatic clearance of dexmedetomidine and prolonged plasma elimination t1/2. The mean plasma clearance values of unbound dexmedetomidine for subjects with mild, moderate, and severe hepatic impairment were 59%, 51% and 32% of those observed in the normal healthy subjects, respectively. The mean t1/2 for the subjects with mild, moderate or severe hepatic impairment was prolonged to 3.9, 5.4, and 7.4 hours, respectively. Although dexmedetomidine is administered to effect, it may be necessary to consider initial/maintenance dose reduction in patients with hepatic impairment depending on the degree of impairment and the response.
The pharmacokinetics of dexmedetomidine in subjects with severe renal impairment (creatinine clearance <30 mL/min) is not altered relative to healthy subjects.
Data in new-born infants (28 - 44 weeks gestation) to children 17 years of age are limited. Dexmedetomidine half life in children (1 months to 17 years) appears similar to that seen in adults, but in new-born infants (under 1 month) it appears higher. In the age groups 1 months to 6 years, body weight-adjusted plasma clearance appeared higher but decreased in older children. Body weightadjusted plasma clearance in new-born infants (under 1 month) appeared lower (0.9 l/h/kg) than in the older groups due to immaturity. The available data is summarised in the following table:
|
| Mean (95% CI) | |
Age | N | Cl (l/h/kg) | t1/2 (h) |
Under 1 month | 28 | 0.93 (0.76, 1.14) | 4.47 (3.81, 5.25) |
1 to < 6 months | 14 | 1.21 (0.99, 1.48) | 2.05 (1.59, 2.65) |
6 to < 12 months | 15 | 1.11 (0.94, 1.31) | 2.01 (1.81, 2.22) |
12 to < 24 months | 13 | 1.06 (0.87, 1.29) | 1.97 (1.62, 2.39) |
2 to < 6 years | 26 | 1.11 (1.00, 1.23) | 1.75 (1.57, 1.96) |
6 to < 17 years | 28 | 0.80 (0.69, 0.92) | 2.03 (1.78, 2.31) |
Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, single and repeated dose toxicity and genotoxicity.
In the reproductive toxicity studies, dexmedetomidine had no effect on male or female fertility in the rat, and no teratogenic effects were observed in the rat or rabbit. In the rabbit study intravenous administration of the maximum dose, 96 µg/kg/day, produced exposures that are similar to those observed clinically. In the rat, subcutaneous administration at the maximum dose, 200 µg/kg/day, caused an increase in embryofetal death and reduced the fetal body weight. These effects were associated with clear maternal toxicity. Reduced fetal body weight was noted also in the rat fertility study at dose 18 µg/kg/day and was accompanied with delayed ossification at dose 54 µg/kg/day. The observed exposure levels in the rat are below the clinical exposure range.
Sodium chloride.
Water for injections.
In the absence of compatibility studies, this medicinal product must not be mixed with other medicinal products.
Store below 30°C.
Store in the original package.
Naplax® is packed in Type I 50 mL capacity colourless glass vials.
Vials are closed by stopper and sealed by caps.
Each 50 mL vial contains 200 micrograms dexmedetomidine.
Pack size:
1 Vial (50 ml single-Use Vial packed in carton boxes).
Vials are intended for single patient use only.
Only clear solution free from particles and discoloration should be used. The solution should be used immediately after opening.
Any unused medicinal product or waste material should be disposed of in accordance with local requirements.