Search Results
نشرة الممارس الصحي | نشرة معلومات المريض بالعربية | نشرة معلومات المريض بالانجليزية | صور الدواء | بيانات الدواء |
---|
Levonic is a fluoroquinolone antibiotic medicine used in adults age 18 years or older to treat certain infections caused by certain germs called bacteria. These bacterial infections include:
- Nosocomial pneumonia
- Community acquired pneumonia
- Acute sinus infection
- Acute worsening of chronic bronchitis
- Skin infections, complicated and uncomplicated
- Chronic prostate infection
- Urinary tract infections, complicated and uncomplicated
- Acute kidney infection (pyelonephritis)
- Inhalation anthrax
- Plague
Studies of levofloxacin for use in the treatment of plague and anthrax were done in animals only, because plague and anthrax could not be studied in people.
Levonic should not be used in patients with uncomplicated urinary tract infections, acute bacterial exacerbation of chronic bronchitis, or acute bacterial sinusitis if there are other treatment options available.
Levofloxacin is also used to treat children who are 6 months of age or older and may have breathed in anthrax germs, have plague, or been exposed to plague germs.
It is not known if levofloxacin is safe and effective in children under 6 months of age.
The safety and effectiveness in children treated with levofloxacin for more than 14 days is not known.
Do not use Levonic
If you have ever had a severe allergic reaction to an antibiotic known as a fluoroquinolone, or if you are allergic to levofloxacin or any of the ingredients in Levonic. See the end of this leaflet for a complete list of ingredients in Levonic.
Warnings and precautions
Before you take Levonic, tell your healthcare provider if you:
- Have tendon problems; levofloxacin should not be used in patients who have a history of tendon problems
- Have a problem that causes muscle weakness (myasthenia gravis); levofloxacin should not be used in patients who have a known history of myasthenia gravis
- Have central nervous system problems such as seizures (epilepsy)
- Have nerve problems; levofloxacin should not be used in patients how have a history of a nerve problem called peripheral neuropathy
- Have or anyone in your family has an irregular heartbeat, especially a condition called “QT prolongation”
- Have low blood potassium (hypokalemia)
- Have bone problems
- Have joint problems including rheumatoid arthritis (RA)
- Have kidney problems. You may need a lower dose of levofloxacin if your kidneys do not work well.
- Have liver problems
- Have diabetes or problems with low blood sugar (hypoglycemia)
- Are pregnant or plan to become pregnant. It is not known if levofloxacin will harm your unborn child.
- Are breastfeeding or plan to breastfeed. It is not known if levofloxacin passes into your breast milk. You and your healthcare provider should decide if you will take levofloxacin or breastfeed. You should not do both.
- You have been diagnosed with leaking heart valves (heart valve regurgitation)
- You have a family history of aortic aneurysm or aortic dissection or congenital heart valve disease, or other risk factors or predisposing conditions (e.g. connective tissue disorders such as Marfan syndrome or Ehlers-Danlos syndrome, Turner syndrome, Sjögren’s syndrome [an inflammatory autoimmune disease], or vascular disorders such as Takayasu arteritis, giant cell arteritis, Behcet’s disease, high blood pressure, or known atherosclerosis, rheumatoid arthritis [a disease of the joints] or endocarditis [an infection of the heart])
If you start experiencing a rapid onset of shortness of breath, especially when you lie down flat in your bed, or you notice swelling of your ankles, feet or abdomen, or a new onset of heart palpitations (sensation of rapid or irregular heartbeat), you should inform a doctor immediately.
What should you avoid while taking Levonic?
- Levofloxacin can make you feel dizzy and lightheaded. Do not drive, operate machinery, or do other activities that require mental alertness or coordination until you know how levofloxacin affects you.
- Avoid sunlamps, tanning beds, and try to limit your time in the sun. Levofloxacin can make your skin sensitive to the sun (photosensitivity) and the light from sunlamps and tanning beds. You could get severe sunburn, blisters or swelling of your skin. If you get any of these symptoms while you take levofloxacin, call your healthcare provider right away. You should use a sunscreen and wear some hat and clothes that cover your skin if you have to be in sunlight.
Other medicines and Levonic
Tell your healthcare provider about all the medicines you take, including prescription and non-prescription medicines, vitamins, and herbal supplements.
Levofloxacin and other medicines can affect each other causing side effects.
Especially tell your healthcare provider if you take:
- A steroid medicine
- An anti-psychotic medicine
- A tricyclic antidepressant
- A water pill (diuretic)
- A blood thinner (warfarin)
- An oral anti-diabetes medicine or insulin
- An NSAID (Non-Steroidal Anti-Inflammatory Drug). Many common medicines for pain relief are NSAIDs. Taking an NSAID while you take levofloxacin or other fluoroquinolones may increase your risk of central nervous system effects and seizures.
- Theophylline
- A medicine to control your heart rate or rhythm (antiarrhythmics)
Ask your healthcare provider if you are not sure if any of your medicines are listed above.
Know the medicines you take. Keep a list of your medicines and show it to your healthcare provider and pharmacist when you get a new medicine.
Pregnancy and breast-feeding
Before you take Levonic, tell your healthcare provider if you:
- Are pregnant or plan to become pregnant. It is not known if levofloxacin will harm your unborn child.
- Are breastfeeding or plan to breastfeed. It is not known if levofloxacin passes into your breast milk. You and your healthcare provider should decide if you will take levofloxacin or breastfeed. You should not do both.
Driving and using machines
Levofloxacin can make you feel dizzy and lightheaded. Do not drive, operate machinery, or do other activities that require mental alertness or coordination until you know how levofloxacin affects you.
Levonic contains sodium
Levonic contains sodium. This medicine contains less than 1 mmol sodium (23 mg) per 150 ml, that is to say essentially ‘sodium-free’.
- Take Levonic exactly as your healthcare provider tells you to take it.
- Take Levonic at about the same time each day.
- Drink plenty of fluids while you take Levonic.
- If you miss a dose of Levonic, take it as soon as you remember. Do not take more than 1 dose in 1 day.
- Levonic for injection is given by slow intravenous (I.V.) infusion into your vein over 60 or 90 minutes as prescribed by your healthcare provider.
If you take more Levonic than you should
If you take too much Levonic, call your healthcare provider or get medical help right away.
If you stop taking Levonic
Do not skip any doses of Levonic or stop taking it, even if you begin to feel better, until you finish your prescribed treatment unless:
- You have tendon problems. See “Possible side effects”.
- You have a nerve problem. See “Possible side effects”.
- You have a central nervous system problem. See “Possible side effects”.
- You have a serious allergic reaction. See “Possible side effects”.
- Your healthcare provider tells you to stop taking Levonic.
Taking all of your Levonic doses will help make sure that all of the bacteria are killed. Taking all of your Levonic doses will help you lower the chance that the bacteria will become resistant to Levonic. If your infection does not get better while you take Levonic, it may mean that the bacteria causing your infection may be resistant to Levonic. If your infection does not get better, call your healthcare provider. If your infection does not get better, Levonic and other similar antibiotic medicines may not work for you in the future.
Levofloxacin can cause serious side effects, including:
Levofloxacin, a fluoroquinolone antibiotic, can cause serious side effects. Some of these serious side effects can happen at the same time and could result in death.
If you have any of the following serious side effects while you take levofloxacin, you should stop taking levofloxacin immediately and get medical help right away.
Tendon rupture or swelling of the tendon (tendinitis)
Tendon problems can happen in people of all ages who take levofloxacin. Tendons are tough cords of tissue that connect muscles to bones.
Some tendon problems include pain, swelling, tears, and swelling of tendons including the back of the ankle (Achilles), shoulder, hand, or other tendon sites.
The risk of getting tendon problems while you take levofloxacin is higher if you:
- Are over 60 years of age
- Are taking steroids (corticosteroids)
- Have had a kidney, heart or lung transplant.
Tendon problems can happen in people who do not have the above risk factors when they take levofloxacin.
Other reasons that can increase your risk of tendon problems can include:
- Physical activity or exercise
- Kidney failure
- Tendon problems in the past, such as in people with rheumatoid arthritis (RA).
Stop taking levofloxacin immediately and get medical help right away at the first sign of tendon pain, swelling or inflammation. Avoid exercise and using the affected area.
The most common area of pain and swelling is the Achilles tendon at the back of your ankle. This can also happen with other tendons. You may need a different antibiotic that is not a fluoroquinolone to treat your infection.
Tendon rupture can happen while you are taking or after you have finished taking levofloxacin. Tendon ruptures can happen within hours or days of taking levofloxacin and have happened up to several months after people have finished taking their fluoroquinolone.
Stop taking levofloxacin immediately and get medical help right away if you get any of the following signs or symptoms of a tendon rupture:
- Hear or feel a snap or pop in a tendon area
- Bruising right after an injury in a tendon area
- Unable to move the affected area or bear weight.
Changes in sensation and possible nerve damage (Peripheral Neuropathy)
Damage to the nerves in arms, hands, legs, or feet can happen in people who take fluoroquinolones, including levofloxacin. Stop taking levofloxacin immediately and talk to your healthcare provider right away if you get any of the following symptoms of peripheral neuropathy in your arms, hands, legs, or feet:
- Pain
- Burning
- Tingling
- Numbness
- Weakness
The nerve damage may be permanent.
Central Nervous System (CNS) effects
Seizures have been reported in people who take fluoroquinolone antibacterial medicines, including levofloxacin. Tell your healthcare provider if you have a history of seizures before you start taking levofloxacin. CNS side effects may happen as soon as after taking the first dose of levofloxacin. Stop taking levofloxacin immediately and talk to your healthcare provider right away if you get any of these side effects, or other changes in mood or behavior:
- Seizures
- Hear voices, see things, or sense things that are not there (hallucinations)
- Feel restless
- Tremors
- Feel anxious or nervous
- Confusion
- Depression
- Trouble sleeping
- Nightmares
- Feel lightheaded or dizzy
- Feel more suspicious (paranoia)
- Suicidal thoughts or acts
- Headaches that will not go away, with or without blurred vision
Worsening of myasthenia gravis (a problem that causes muscle weakness)
Fluoroquinolones like levofloxacin may cause worsening of myasthenia gravis symptoms, including muscle weakness and breathing problems. Tell your healthcare provider if you have a history of myasthenia gravis before you start taking levofloxacin. Call your healthcare provider right away if you have any worsening muscle weakness or breathing problems.
Serious allergic reactions
Allergic reactions can happen in people taking fluoroquinolones, including levofloxacin, even after only 1 dose. Stop taking levofloxacin and get emergency medical help right away if you have any of the following symptoms of a severe allergic reaction:
- Hives
- Trouble breathing or swallowing
- Swelling of the lips, tongue, face
- Throat tightness, hoarseness
- Rapid heartbeat
- Faint
- Skin rash
Skin rash may happen in people taking levofloxacin, even after only 1 dose. Stop taking levofloxacin at the first sign of a skin rash and immediately call your healthcare provider. Skin rash may be a sign of a more serious reaction to levofloxacin.
Liver damage (hepatotoxicity): Hepatotoxicity can happen in people who take levofloxacin. Call your healthcare provider right away if you have unexplained symptoms such as:
- Nausea or vomiting
- Stomach pain
- Fever
- Weakness
- Abdominal pain or tenderness
- Itching
- Unusual tiredness
- Loss of appetite
- Light colored bowel movements
- Dark colored urine
- Yellowing of your skin or the whites of your eyes
Stop taking levofloxacin and tell your healthcare provider right away if you have yellowing of your skin or white part of your eyes, or if you have dark urine. These can be signs of a serious reaction to levofloxacin (a liver problem).
Intestine infection (Pseudomembranous colitis)
Pseudomembranous colitis can happen with many antibiotics, including levofloxacin. Call your healthcare provider right away if you get watery diarrhea, diarrhea that does not go away, or bloody stools. You may have stomach cramps and a fever. Pseudomembranous colitis can happen 2 or more months after you have finished your antibiotic.
Serious heart rhythm changes (QT prolongation and torsades de pointes).
Tell your healthcare provider right away if you have a change in your heart beat (a fast or irregular heartbeat), or if you faint. Levofloxacin may cause a rare heart problem known as prolongation of the QT interval. This condition can cause an abnormal heartbeat and can be very dangerous. The chances of this happening are higher in people:
- Who are elderly
- With a family history of prolonged QT interval
- With low blood potassium (hypokalemia)
- Who take certain medicines to control heart rhythm (antiarrhythmics).
Joint Problems
Increased chance of problems with joints and tissues around joints in children can happen. Tell your child’s healthcare provider if your child has any joint problems during or after treatment with levofloxacin.
Changes in blood sugar
People who take levofloxacin and other fluoroquinolone medicines with oral anti-diabetes medicines or with insulin can get low blood sugar (hypoglycemia) and high blood sugar (hyperglycemia). Follow your healthcare provider’s instructions for how often to check your blood sugar. If you have diabetes and you get low blood sugar while taking levofloxacin, stop taking levofloxacin and call your healthcare provider right away. Your antibiotic medicine may need to be changed.
Sensitivity to sunlight (photosensitivity)
See “What should you avoid while taking Levonic?”
The most common side effects of levofloxacin include:
- Nausea
- Headache
- Diarrhea
- Insomnia
- Constipation
- Dizziness
In children 6 months and older who take levofloxacin to treat anthrax disease or plague, vomiting is also common.
Low blood pressure can happen when levofloxacin is given too fast by IV injection. Tell your healthcare provider if you feel dizzy or faint during a treatment with levofloxacin Injection.
Levofloxacin may cause false-positive urine screening results for opiates when testing is done with some commercially available kits. A positive result should be confirmed using a more specific test.
Cases of an enlargement and weakening of the aortic wall or a tear in the aortic wall (aneurysms and dissections), which may rupture and may be fatal, and of leaking heart valves have been reported in patients receiving fluoroquinolones. See also section 2.
These are not all the possible side effects of levofloxacin. Tell your healthcare provider about any side effect that bothers you or that does not go away.
Call your doctor for medical advice about side effects.
Keep this medicine out of the sight and reach of children.
Do not store above 30°C.
Store in the original package in order to protect from heat and light.
Do not use this medicine after the expiry date which is stated on the package after “EXP”. The expiry date refers to the last day of that month.
Do not use if the solution is cloudy or a precipitate is present.
For single use only, any unused portion should be discarded
Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.
The active substance is levofloxacin hemihydrate.
Each 150 ml contains 768 mg levofloxacin hemihydrate equivalent to 750 mg levofloxacin.
The other ingredients are dextrose, sodium hydroxide, hydrochloric acid and water for injection.
Marketing Authorization Holder and Batch releaser
Jazeera Pharmaceutical Industries
Al-Kharj Road
P.O. BOX 106229
Riyadh 11666, Saudi Arabia
Tel: + (966-11) 8107023, + (966-11) 2142472
Fax: + (966-11) 2078170
e-mail: SAPV@hikma.com
Bulk manufacturer
Hikma Farmaceutica (Portugal), S.A.
Estrada do Rio Da Mó,
n.°8, 8A e 8B, Fervença
2705-906 Terrugem
Sintra, Portugal
Tel: + (351-2) 19608410
Fax: + (351-2) 19615102
Reporting of side effects
If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly (see details below). By reporting side effects, you can also help provide more information on the safety of this medicine.
- Saudi Arabia
The National Pharmacovigilance Centre (NPC)
SFDA Call Center: 19999
E-mail: npc.drug@sfda.gov.sa
Website: https://ade.sfda.gov.sa
- Other GCC States
Please contact the relevant competent authority.
يعد ليڤونك أحد أدوية المضادات الحيوية تحتوي على الفلوروكينولون، ويُستخدم لدى البالغين ممن تبلغ أعمارهم ١٨ عامًا أو أكثر لعلاج حالات عدوى محددة تسببها جراثيم معينة يُطلق عليها البكتيريا. تشمل حالات العدوى البكتيرية هذه:
- الالتهاب الرئوي المكتسب من المستشفى
- الالتهاب الرئوي المكتسب من المجتمع
- التهاب الجيوب الأنفية الحاد
- التفاقم الحاد لالتهاب الشعب الهوائية المزمن
- العدوى الجلدية، المصحوبة بمضاعفات وغير المصحوبة بمضاعفات
- التهاب البروستات المزمن
- حالات عدوى المسالك البولية، المصحوبة بمضاعفات وغير المصحوبة بمضاعفات
- التهاب الكلى الحاد (التهاب الحويصلة والكلية)
- الجمرة الخبيثة الاستنشاقية
- الطاعون
تم إجراء دراسات ليڤوفلوكساسين للاستخدام في علاج الطاعون والجمرة الخبيثة على الحيوانات فقط، حيث لا يمكن تطبيق دراسات الطاعون والجمرة الخبيثة على البشر.
يجب عدم استخدام ليڤونك لدى المرضى المصابين بعدوى المسالك البولية غير المصحوبة بمضاعفات أو التفاقم الحاد لالتهاب الشعب الهوائية المزمن أو التهاب الجيوب الأنفية البكتيري الحاد في حال توافر خيارات علاجية أخرى.
كما يُستخدم ليڤوفلوكساسين لعلاج الأطفال الذين تبلغ أعمارهم ٦ أشهر أو أكثر، وقد استنشقوا جراثيم الجمرة الخبيثة أو أُصيبوا بالطاعون أو تعرضوا لجراثيم الطاعون.
من غير المعروف ما إذا كان ليڤوفلوكساسين آمناً وفعالاً لدى الأطفال دون سن ٦ أشهر.
مأمونية وفعالية علاج الأطفال بليڤوفلوكساسين لأكثر من ١٤ يومًا غير معروفة.
لا تستخدم ليڤونك
لا تستخدم ليڤونك إذا كنت تعاني في السابق من رد فعل تحسسي حاد للمضاد الحيوي المعروف باسم فلوروكيونولون، أو إذا كنت تعاني من رد فعل تحسسي لليڤوفلوكساسين أو أي من مكونات ليڤونك. انظر نهاية هذه النشرة للحصول على قائمة كاملة بمكونات ليڤونك.
الاحتياطات والتحذيرات
قبل أخذ ليڤونك، أخبر مقدم الرعاية الصحية إذا كنت:
- تعاني من مشاكل في الأوتار؛ يجب عدم استخدام ليڤوفلوكساسين لدى المرضى الذي لديهم سجل من مشاكل في الأوتار
- تعاني من مشكلة تسبب ضعف العضلات (الوهن العضلي الوبيل)؛ يجب عدم استخدام ليڤوفلوكساسين لدى المرضى الذي لديهم سجل معروف من الوهن العضلي الوبيل
- تعاني من مشاكل في الجهاز العصبي المركزي مثل النوبات (الصرع)
- تعاني من مشاكل عصبية؛ يجب عدم استخدام ليڤوفلوكساسين لدى المرضى الذي لديهم سجل من مشكلة عصبية يُطلق عليها اعتلال الأعصاب
- تعاني أنت أو أي فرد من أفراد عائلتك من عدم انتظام ضربات القلب، وبخاصة الحالة التي يُطلق عليها "إطالة فترة QT"
- تعاني من انخفاض البوتاسيوم في الدم (نقص البوتاسيوم في الدم)
- تعاني من مشاكل في العظام
- تعاني من مشاكل في المفاصل مثل التهاب المفاصل الروماتويدي
- تعاني من مشاكل في الكلى. قد تحتاج لتناول جرعة منخفضة من ليڤوفلوكساسين إذا لم تكن كليتاك تؤديان وظيفتهما جيداً
- تعاني من مشاكل في الكبد
- تعاني من مرض السكري أو مشاكل في انخفاض السكر في الدم (انخفاض سكر الدم).
- حاملاً أو تخططين للحمل. ليس من المعروف ما إذا كان ليڤوفلوكساسين سيؤذي جنينك أم لا.
- إذا كنتِ مرضعًا أو تخططين للرضاعة الطبيعة. من غير المعروف ما إذا كان ليڤوفلوكساسين سينتقل إلى حليب الأم أم لا. ويجب عليك أنتِ ومقدم الرعاية الصحية أن تقررا ما إذا كنتِ ستأخذين ليڤوفلوكساسين أو سترضعين طبيعيًا. ويجب عليكِ ألا تفعلي الأمرين معًا.
- تم تشخيصك بتسريب صمامات القلب (ارتجاع صمام القلب)
- كان لدى عائلتك تاريخ مرضي من أم الدم الأبهرية أو تسلخ الأبهر أو مرض الصمام القلبي الخلقي، أو عوامل الخطر الأخرى أو الحالات المهيئة للمرض (على سبيل المثال، اضطرابات الأنسجة الضامة مثل متلازمة مارفان، أو مُتَلاَزِمَةُ إيلَر-دانلوس، متلازمة تيرنر، داء شوغرين [مرض مناعي ذاتي التهابي]، أو اضطرابات الأوعية الدموية مثل التهاب الشرايين في تاكاياسو، التهاب الشرايين ذو الخلايا العملاقة، متلازمة بهجت، ارتفاع ضغط الدم أو المعروف بتصلب الشرايين، التهاب المفاصل الروماتويدي [مرض في المفاصل] أو التهاب الشغاف [عدوى في القلب]).
إذا بدأت تشعر بشكل متسارع بضيق تنفس، خاصة عند الاستلقاء بشكل متسطح على السرير، أو لاحظت تورم الكاحلين، القدم أو البطن، أو بداية جديدة لخفقان القلب (الشعور بنبض متسارع أو نظم قلب غير منتظم)، يجب عليك إخبار الطبيب فوراً.
ما الذي يجب عليك تجنبه أثناء أخذ ليڤونك؟
- قد يجعلك ليڤوفلوكساسين تشعر بالدوار والدوخة. لا تقم بالقيادة أو تشغيل الآلات أو الأنشطة الأخرى التي تتطلب الانتباه الذهني أو التنسيق حتى تعرف مدى تأثير ليڤوفلوكساسين عليك.
- تجنب المصابيح الشمسية وأسرة التسمير وحاول تحديد وقت تعرضك للشمس. قد يجعل ليڤوفلوكساسين جلدك حساسًا للشمس (الحساسية للضوء) وضوء المصابيح الشمسية وأسرة التسمير. قد تعاني من حرق شمسي خطير أو ظهور بثور أو تورم الجلد. إذا كنت تعاني من أي من هذه الأعراض أثناء تناول ليڤوفلوكساسين، اتصل بمُقدم الرعاية الصحية الخاص بك على الفور. عليك استخدام واقي شمسي وارتداء قبعة وملابس تغطي جلدك حال اضطررت للتعرض لضوء الشمس.
الأدوية الأخرى وليڤونك
أخبر مقدم الرعاية الصحية عن جميع الأدوية التي تأخذها، بما في ذلك الأدوية الموصوفة وغير الموصوفة لك، كالڤيتامينات والمكملات العشبية.
يمكن أن يؤثر ليڤوفلوكساسين والأدوية الأخرى على مفعول بعضهم بعضًا مما يسبب آثاراً جانبية.
أخبر مقدم الرعاية الصحية خصوصًا إذا كنت تأخذ:
- دواء الستيرويد.
- دواء مضادة للذهان
- مضاد الاكتئاب ثلاثي الحلقات
- قرص الماء (مدر للبول)
- مرقق الدم (وارفارين)
- دواء مضاد لمرض السكري التي تُؤخذ عن طريق الفم أو الأنسولين
- دواء مضاد للالتهابات غير الستيرويدية. العديد من الأدوية الشائعة لتخفيف الألم هي مضادات للالتهابات غير الستيرويدية. قد يسبب تناول مضاد الالتهابات غير الستيرويدية أثناء تناول ليڤوفلوكساسين أو أدوية الفلوروكيونولون الأخرى زيادة خطر النوبات والآثار المتعلقة بالجهاز العصبي المركزي.
- ثيوفيلين
- دواء للتحكم في معدل ضربات القلب أو نظم القلب (مضادات اضطراب النظم).
استشير مقدم الرعاية الصحية الخاص بك إذا لم تكن متأكدًا ما إذا كانت أي من أدويتك مدرجة أعلاه.
كن على معرفة بالأدوية التي تتناولها. احتفظ بقائمة لأدويتك واعرضها على مقدم الرعاية الصحية والصيدلي عندما تحصل على دواء جديد.
الحمل والرضاعة
قبل أخذ ليڤونك، أخبر مقدم الرعاية الصحية إذا كنتِ:
- حاملاً أو تخططين للحمل. ليس من المعروف ما إذا كان ليڤوفلوكساسين سيؤذي جنينك أم لا.
- إذا كنتِ مرضعًا أو تخططين للرضاعة الطبيعة. من غير المعروف ما إذا كان ليڤوفلوكساسين سينتقل إلى حليب الأم أم لا. ويجب عليك أنتِ ومقدم الرعاية الصحية أن تقررا ما إذا كنتِ ستأخذين ليڤوفلوكساسين أو سترضعين طبيعيًا. ويجب عليكِ ألا تفعلي الأمرين معًا.
القيادة واستخدام الآلات
قد يجعلك ليڤوفلوكساسين تشعر بالدوار والدوخة. لا تقم بالقيادة أو تشغيل الآلات أو الأنشطة الأخرى التي تتطلب الانتباه الذهني أو التنسيق حتى تعرف مدى تأثير ليڤوفلوكساسين عليك.
يحتوي ليڤونك على الصوديوم
يحتوي ليڤونك على الصوديوم. يحتوي هذا الدواء على أقل من ١ ملمول صوديوم (٢٣ ملغم) لكل ١٥٠ مللتر، وبذلك يمكن اعتباره ’خالٍ من الصوديوم‘ بشكل أساسي.
- خذ ليڤونك كما وصفه لك مقدم الرعاية الصحية تمامًا.
- خذ ليڤونك في الوقت نفسه تقريباً كل يوم.
- اشرب مقدارًا وافرًا من السوائل أثناء أخذك ليڤونك.
- إذا نسيت أخذ جرعة ليڤونك، فخذها فور تذكرها. لا تأخذ أكثر من جرعة واحدة يومياً.
- يتم إعطاء ليڤونك للحقن عن طريق التسريب الوريدي البطيء في الوريد لمدة ٦٠ أو ٩٠ دقيقة كما وصفه لك مقدم الرعاية الصحية الخاص بك.
إذا أخذت ليڤونك أكثر من اللازم
اتصل بمقدم الرعاية الصحية الخاص بك أو اطلب المساعدة الطبية على الفور إذا أخذت جرعة زائدة من ليڤونك.
إذا توقفت عن أخذ ليڤونك
لا تفوَّت أي جرعة من ليڤونك أو تتوقف عن أخذه، حتى إذا شعرت بالتحسن، حتى تنتهي من دوائك الموصوف إلا إذا:
- كنت تعاني من مشاكل في الأوتار. أنظر إلى "الآثار الجانبية المحتملة".
- تعاني من مشكلة في الأعصاب. أنظر إلى "الآثار الجانبية المحتملة".
- كنت تعاني من مشكلة في الجهاز العصبي المركزي. أنظر إلى "الآثار الجانبية المحتملة".
- تعاني من رد فعل تحسسي خطير. أنظر إلى "الآثار الجانبية المحتملة".
- يطلب منك مقدم الرعاية الصحية الخاص بك التوقف عن أخذ ليڤونك.
سيساعد أخذ جميع جرعات ليڤونك في التأكد من قتل البكتيريا بالكامل. سيساعد أخذ جميع جرعات ليڤونك في تقليل احتمالية مقاومة البكتيريا لدواء ليڤونك. إذا لم تتحسن حالة العدوى لديك أثناء أخذ ليڤونك، قد يعني ذلك أن البكتيريا قد تسببت في جعل العدوى مقاومة لدواء ليڤونك. إذا لم تتحسن حالة العدوى لديك، اتصل بمقدم الرعاية الصحية الخاص بك. إذا لم تتحسن حالة العدوى لديك، قد لا يكون ليڤونك وأدوية المضادات الحيوية الأخرى المماثلة ذات فعالية بالنسبة لك مستقبلاً.
يمكن أن يسبب ليڤوفلوكساسين آثاراً جانبية خطيرة، منها:
يمكن أن يتسبب ليڤوفلوكساسين، وهو أحد مضادات فلوروكيونولون الحيوية، في حدوث آثار جانبية خطيرة. قد تحدث بعض هذه الآثار الجانبية الخطيرة في الوقت ذاته، وقد تؤدي إلى الوفاة.
في حال ظهور أي من الآثار الجانبية الخطيرة التالية أثناء تناولك ليڤوفلوكساسين، ينبغي عليك التوقف عن أخذه فورًا والحصول على مساعدة طبية في الحال.
تمزق الوتر أو تورمه (التهاب الوتر)
قد تصيب مشاكل الوتر الأشخاص الذين يأخذون ليڤوفلوكساسين من جميع الأعمار. الأوتار عبارة عن حبال قوية من الأنسجة تصل العضلات بالعظام.
تشمل بعض مشاكل الأوتار الألم، التورم، التمزقات وتورم الأوتار وتتضمن مؤخرة الكاحل (العُرْقُوب)، الكتف، اليد أو أماكن الأوتار الأخرى.
خطورة التعرض لمشاكل الأوتار عند أخذ ليڤوفلوكساسين إذا:
- تجاوز عمرك ٦٠ سنة
- كنت تتناول الستيرويدات (الستيرويدات القشرية)
- أُجريت لك عملية زراعة للكلية أو القلب أو الرئة.
قد تصيب مشاكل الأوتار الأشخاص غير المعرضين لعوامل الخطر المذكورة أعلاه عند أخذهم لليڤوفلوكساسين.
يمكن أن تشمل الأسباب الأخرى التي قد تُزيد من خطر تعرضك لمشاكل بالأوتار:
- النشاط البدني أو ممارسة التمرينات
- الفشل الكلوي
- التعرض لمشاكل بالأوتار في الماضي، كما هو الحال مع الأشخاص المصابين بالتهاب المفاصل الروماتويدي.
توقف عن أخذ ليڤوفلوكساسين فورًا واحصل على مساعدة طبية في الحال عند ظهور أول علامة من علامات ألم الأوتار أو تورمها أو التهابها. تجنب ممارسة التمارين واستخدام الموضع المُصاب.
أكثر المناطق التي يحدث بها ألم وتورم هي وتر العرقوب في مؤخرة الكاحل. ويمكن أن يحدث هذا الألم والتورم أيضًا في الأوتار الأخرى. قد تحتاج أخذ مضاد حيوي آخر غير مضادات فلوروكيونولون الحيوية لعلاج العدوى المُصاب بها.
يمكن أن يحدث تمزق الأوتار أثناء أخذك ليڤوفلوكساسين أو بعد انتهائك من أخذه. وقد تحدث حالات تمزق الأوتار في غضون ساعات أو أيام من أخذ ليڤوفلوكساسين وقد حدثت مثل تلك الحالات حتى بعد مرور عدة أشهر من توقف المرضى عن أخذ الأدوية التي تنتمي إلى مجموعة الفلوروكيونولون.
توقف عن تناول ليڤوفلوكساسين فورًا واحصل على مساعدة طبية في الحال عند ظهور أي من علامات أو أعراض تمزق الأوتار التالية:
- سماع طقطقة أو فرقعة، أو الشعور بها، في إحدى مناطق الأوتار
- التَكَدُّم مباشرة بعد وقوع إصابة في إحدى مناطق الأوتار
- عدم القدرة على تحريك المنطقة المُصابة أو تحمل الوزن
تغيرات في الإحساس وتلف مُحتمل بالأعصاب (اعتلال الأعصاب)
قد تحدث حالات تلف بأعصاب الذراعين أو اليدين أو الساقين أو القدمين لدى الأشخاص الذين يأخذون أدوية تنتمي إلى مجموعة الفلوروكيونولون، مثل ليڤوفلوكساسين. توقف عن أخذ ليڤوفلوكساسين فورًا وتحدث إلى مُقدم الرعاية الصحية الخاص بك في الحال عند ظهور أي من أعراض اعتلال الأعصاب التالية في ذراعيك أو يديك أو ساقيك أو قدميك:
- الألم
- الحروق
- الوخز
- التنميل
- الضعف
قد يكون تلف الأعصاب دائم.
الآثار المتعلقة بالجهاز العصبي المركزي
سُجلت نوبات لدى الأشخاص الذين يأخذون أدوية فلوروكيونولون المضادة للبكتيريا، التي تشمل ليڤوفلوكساسين. أخبر مُقدم الرعاية الصحية الخاص بك إذا كان لديك سجل مرضي بحدوث نوبات قبل البدء في أخذ ليڤوفلوكساسين. قد تحدث الآثار الجانبية المتعلقة بالجهاز العصبي المركزي بعد أخذ أول جرعة من ليڤوفلوكساسين مباشرة. توقف عن أخذ ليڤوفلوكساسين فورًا وتحدث إلى مُقدم الرعاية الصحية الخاص بك في الحال عند ظهور أي من هذه الآثار الجانبية أو حدوث تغيرات أخرى في الحالة المزاجية أو السلوك:
- نوبات
- سماع أصوات أو رؤية أشياء أو الشعور بأشياء غير موجودة (هلوسات)
- الشعور بالتململ
- الرعاش
- الشعور بالقلق أو العصبية
- الارتباك
- الاكتئاب
- اضطراب النوم
- الكوابيس
- الشعور بالدوخة أو الدوار
- الشعور بمزيد من الارتياب (البارانويا)
- تصرفات أو أفكار انتحارية
- صداع لا يهدأ، مع أو بدون تغيم في الرؤية.
تفاقم الوهن العضلي الوبيل (مرض يُسبب ضعف العضلات)
قد تتسبب أدوية الفلوروكيونولون، مثل ليڤوفلوكساسين، في تفاقم أعراض الوهن العضلي الوبيل، بما في ذلك ضعف العضلات ومشاكل التنفس. أخبر مُقدم الرعاية الصحية الخاص بك إذا كان لديك سجل مرضي بحدوث حالات وهن عضلي وبيل قبل البدء في تناول ليڤوفلوكساسين. اتصل بمُقدم الرعاية الصحية الخاص بك فور حدوث أي تفاقم في ضعف العضلات أو مشاكل في التنفس.
ردود فعل تحسسية خطيرة
قد تحدث ردود فعل تحسسية لدى الأشخاص الذين يأخذون أدوية الفلوروكيونولون، التي تشمل ليڤوفلوكساسين، حتى بعد أخذ جرعة واحدة فقط. توقف عن أخذ ليڤوفلوكساسين واطلب المساعدة الطبية الطارئة فوراً إذا عانيت من أي من أعراض ردود الفعل التحسسية الخطيرة التالية:
- الشرى
- صعوبة في التنفس أو تورم
- تورم الشفتين، اللسان، الوجه
- ضيق الحلق، البحة
- سرعة نبض القلب
- الإغماء
- الطفح الجلدي
قد يحدث الطفح الجلدي لدى الأشخاص الذين يأخذون ليڤوفلوكساسين حتى بعد أخذ جرعة واحدة فقط. توقف عن أخذ ليڤوفلوكساسين عند ظهور العلامة الأولى للطفح الجلدي واتصل بمقدم الرعاية الصحية الخاص بك فوراً. قد يكون الطفح الجلدي علامة لرد فعل تحسسي أكثر خطورة لليڤوفلوكساسين.
تلف الكبد (تسمم الكبد): قد يحدث تسمم الكبد لدى الأشخاص الذين يأخذون ليڤوفلوكساسين. اتصل بمُقدم الرعاية الصحية الخاص بك فوراً إذا كنت تعاني من أعراض مجهولة السبب مثل:
- الغثيان أو القيء
- ألم بالمعدة
- حُمّى
- ضعف
- ألم في البطن أو إيلام
- حكة
- تعب غير معتاد
- فقدان الشهية
- براز فاتح اللون
- بول غامق اللون
- اصفرار الجلد أو بياض العينين.
توقف عن أخذ ليڤوفلوكساسين وأخبر مقدم الرعاية الصحية الخاص بك فوراً إذا عانيت من اصفرار الجلد أو بياض جزء من العينين، أو إذا كنت تُخرج بولاً غامق اللون. قد تكون هذه علامات رد فعل تحسسي خطير لليڤوفلوكساسين (مشكلة في الكبد).
عدوى الأمعاء (التهاب القولون الغشائي الكاذب)
قد يحدث التهاب القولون الغشائي الكاذب مع مضادات حيوية كثيرة مثل ليڤوفلوكساسين. اتصل بمقدم الرعاية الصحية الخاص بك فوراً إذا كنت تعاني من إسهال مائي لا يزول أو براز دموي. قد تعاني من تقلصات في المعدة وحمّى. قد يحدث التهاب القولون الغشائي الكاذب بعد شهرين أو أكثر من انتهائك من تناول المضاد الحيوي الخاص بك.
تغيرات خطيرة في نَظم القلب (إطالة فترة QT والتواء النقط في مخطط كهربائية القلب)
أخبر مقدم الرعاية الصحية الخاص بك فوراً إذا عانيت من تغير في ضربات القلب (ضربات قلب سريعة أو غير منتظمة)، أو إذا تعرضت للإغماء. قد يسبب ليڤوفلوكساسين مشكلة نادرة في القلب تُعرف بإطالة فترة QT. وقد تسبب هذه الحالة نبضات قلب غير طبيعية ويمكن أن تكون خطيرة جداً. وتكون احتمالية حدوث ذلك أكبر لدى الأشخاص:
- كبار السن
- الذين لديهم تاريخ عائلي لفترة QT الطويلة.
- الذين يعانون من انخفاض البوتاسيوم في الدم (نقص بوتاسيوم الدم)
- الذين يتناولون أدوية محددة للتحكم في نظم القلب (مضادات اضطراب النظم)
مشاكل في المفاصل
تزداد احتمالية إمكانية حدوث مشاكل في المفاصل والأنسجة المحيطة بها لدى الأطفال. أخبر مقدم الرعاية الصحية لطفلك إذا كان طفلك يعاني من أي مشاكل في المفاصل أثناء العلاج بليڤوفلوكساسين أو بعده.
تغيرات في سكر الدم
قد يعاني الأشخاص الذين يأخذون ليڤوفلوكساسين وأدوية فلوروكيونولون الأخرى مع الأدوية المضادة لمرض السكري التي تُؤخذ عن طريق الفم أو مع الأنسولين من انخفاض السكر في الدم أو ارتفاع السكر في الدم. اتبع تعليمات مقدم الرعاية الصحية الخاص بك بشأن عدد مرات فحص مستوى سكر الدم لديك. توقف عن أخذ ليڤوفلوكساسين واتصل بمقدم الرعاية الصحية الخاص بك فوراً إذا كنت تعاني من مرض السكري وأُصبت بانخفاض السكر في الدم أثناء تناول ليڤوفلوكساسين. فقد يتعين تغيير دواء المضاد الحيوي الخاص بك.
الحساسية لأشعة الشمس (الحساسية للضوء)
انظر قسم "ما الذي يجب عليك تجنبه أثناء أخذ ليڤونك؟"
تشتمل الآثار الجانبية الأكثر شيوعاً لليڤوفلوكساسين على:
- الغثيان
- الصداع
- الإسهال
- الأرق
- الإمساك
- الدوخة
تشيع كذلك الإصابة بالقيء لدى الأطفال الذين تبلغ أعمارهم ٦ أشهر فأكثر، ممن يأخذون ليڤوفلوكساسين لعلاج مرض الجمرة الخبيثة أو الطاعون.
قد ينخفض ضغط الدم عند إعطاء ليڤوفلوكساسين من خلال الحقن الوريدي بشكل أسرع مما ينبغي. أخبر مقدم الرعاية الصحية الخاص بك إذا شعرت بالدوار أو الإغماء أثناء العلاج بحقن ليڤوفلوكساسين.
قد يسبب ليڤوفلوكساسين نتائج فحص بول إيجابية كاذبة للكشف عن المواد الأفيونية عند إجراء الاختبار باستخدام بعض الأدوات المتاحة تجارياً. ويجب تأكيد النتيجة الإيجابية بإجراء فحص أكثر دقة.
تم الإبلاغ عن حالات تضخم وضعف في جدار الأبهر أو تمزق في جدار الأبهر (أمّ الدم والتسلخ)، والتي قد تكون ممزقة وقد تكون قاتلة، وتسريب في صمامات القلب لدى المرضى الذين يتلقون الفلوروكينولونات. انظر أيضًا القسم ٢.
هذه ليست كل الآثار الجانبية المحتملة لليڤوفلوكساسين. أخبر مقدم الرعاية الصحية الخاص بك إذا ظهرت عليك آثار جانبية تزعجك أو لا تختفي.
اتصل بطبيبك للحصول على النصيحة الطبية حول الآثار الجانبية.
احفظ هذا الدواء بعيداً عن مرأى ومتناول الأطفال.
لا يحفظ عند درجة حرارة أعلى من ٣٠° مئوية.
يحفظ داخل العبوة الأصلية للحماية من الحرارة والضوء.
لا تستخدم هذا الدواء بعد تاريخ انتهاء الصلاحية المذكور على العبوة الخارجية بعد "EXP". يشير تاريخ انتهاء الصلاحية إلى اليوم الأخير من ذلك الشهر.
لا تستخدم المحلول إذا كان عكراً أو يحتوي على راسب.
للاستخدام لمرة واحدة فقط، يجب التخلص من أي كمية غير مستخدمة.
لا تتخلص من أي أدوية عن طريق مياه الصرف الصحي أو النفايات المنزلية. اسأل الصيدلي عن كيفية التخلص من الأدوية التي لم تعد بحاجة إليها. هذه الإجراءات ستساعد في الحفاظ على سلامة البيئة.
المادة الفعالة هي نصف ماء الليڤوفلوكساسين.
يحتوي كل ١٥٠ مللتر على ٧٦٨ ملغم نصف ماء الليڤوفلوكساسين يكافئ ٧٥٠ ملغم ليڤوفلوكساسين.
المواد الأخرى المستخدمة في التركيبة التصنيعية هي دكستروز، هيدروكسيد الصوديوم، حمض الهيدروكلوريك وماء معد للحقن.
ليڤونك ٧٥٠ ملغم/١٥٠ مللتر محلول للتسريب هو محلول صافٍ لونه أخضر مائل إلى الأصفر خالٍ من الجزيئات في أكياس بحجم ٢٠٠ مللتر من متعدد البروبيلين مع أغطية قابلة للفتح عن طريق اللف. يتم وضع الكيس في كيس الألومنيوم.
حجم العبوة: كيس واحد (١٥٠ مللتر).
اسم وعنوان مالك رخصة التسويق ومحرر التشغيلة
شركة الجزيرة للصناعات الدوائية
طريق الخرج
صندوق بريد ١٠٦٢٢٩
الرياض ١١٦٦٦، المملكة العربية السعودية
هاتف: ٨١٠٧٠٢٣ (١١-٩٦٦) +، ٢١٤٢٤٧٢ (١١-٩٦٦) +
فاكس: ٢٠٧٨١٧٠ (١١-٩٦٦) +
البريد الإلكتروني: SAPV@hikma.com
الشركة المصنعة للمستحضر النهائي
شركة أدوية الحكمة (البرتغال)
إسترادا دو ريو دا مو،
مبنى رقم 8,8A e 8B°، فارفانسا
٩٠٦-٢٧٠٥ تيروجيم
سنترا، البرتغال
هاتف: ١٩٦٠٨٤١٠ (٢-٣٥١) +
فاكس: ١٩٦١٥١٠٢ (٢-٣٥١)+
للإبلاغ عن الآثار الجانبية
تحدث إلى الطبيب، الصيدلي، أو الممرض إذا عانيت من أية آثار جانبية. وذلك يشمل أي آثار جانبية لم يتم ذكرها في هذه النشرة. كما أنه يمكنك الإبلاغ عن هذه الآثار مباشرةً (انظر التفاصيل المذكورة أدناه). من خلال الإبلاغ عن الآثار الجانبية، يمكنك المساعدة بتوفير معلومات مهمة عن سلامة الدواء.
- المملكة العربية السعودية
المركز الوطني للتيقظ الدوائي
مركز الاتصال الموحد: 19999
البريد الإلكتروني: npc.drug@sfda.gov.sa
الموقع الإلكتروني: https://ade.sfda.gov.sa
- دول الخليج العربي الأخرى
الرجاء الاتصال بالجهات الوطنية في كل دولة.
Levofloxacin tablets/solution for infusion and oral solution are indicated for the treatment of adults (≥18 years of age) with mild, moderate, and severe infections caused by susceptible isolates of the designated microorganisms in the conditions listed in this section. Levonic solution for infusion is indicated when intravenous administration offers a route of administration advantageous to the patient (e.g., patient cannot tolerate an oral dosage form).
Nosocomial Pneumonia
Levonic is indicated for the treatment of nosocomial pneumonia due to methicillin-susceptible Staphylococcus aureus, Pseudomonas aeruginosa, Serratia marcescens, Escherichia coli, Klebsiella pneumoniae, Haemophilus influenzae, or Streptococcus pneumoniae. Adjunctive therapy should be used as clinically indicated. Where Pseudomonas aeruginosa is a documented or presumptive pathogen, combination therapy with an anti-pseudomonal β-lactam is recommended.
Community-Acquired Pneumonia: 7–14 day Treatment Regimen
Levonic is indicated for the treatment of community-acquired pneumonia due to methicillin-susceptible Staphylococcus aureus, Streptococcus pneumoniae (including multidrug-resistant Streptococcus pneumoniae [MDRSP]), Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Chlamydophila pneumoniae, Legionella pneumophila, or Mycoplasma pneumoniae.
MDRSP isolates are isolates resistant to two or more of the following antibacterials: penicillin (MIC ≥2 mcg/ml), 2nd generation cephalosporins, e.g., cefuroxime, macrolides, tetracyclines and trimethoprim/sulfamethoxazole.
Community-Acquired Pneumonia: 5-day Treatment Regimen
Levonic is indicated for the treatment of community-acquired pneumonia due to Streptococcus pneumoniae (excluding multi-drug-resistant isolates [MDRSP]), Haemophilus influenzae, Haemophilus parainfluenzae, Mycoplasma pneumoniae, or Chlamydophila pneumoniae.
Complicated Skin and Skin Structure Infections
Levonic is indicated for the treatment of complicated skin and skin structure infections due to methicillin-susceptible Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, or Proteus mirabilis.
Uncomplicated Skin and Skin Structure Infections
Levonic is indicated for the treatment of uncomplicated skin and skin structure infections (mild to moderate) including abscesses, cellulitis, furuncles, impetigo, pyoderma, wound infections, due to methicillin-susceptible Staphylococcus aureus, or Streptococcus pyogenes.
Chronic Bacterial Prostatitis
Levonic is indicated for the treatment of chronic bacterial prostatitis due to Escherichia coli, Enterococcus faecalis, or methicillin-susceptible Staphylococcus epidermidis.
Inhalational Anthrax (Post-Exposure)
Levonic is indicated for inhalational anthrax (post-exposure) to reduce the incidence or progression of disease following exposure to aerosolized Bacillus anthracis. The effectiveness of levofloxacin is based on plasma concentrations achieved in humans, a surrogate endpoint reasonably likely to predict clinical benefit. Levofloxacin has not been tested in humans for the post-exposure prevention of inhalation anthrax. The safety of levofloxacin in adults for durations of therapy beyond 28 days or in pediatric patients for durations of therapy beyond 14 days has not been studied. Prolonged levofloxacin therapy should only be used when the benefit outweighs the risk.
Plague
Levonic is indicated for treatment of plague, including pneumonic and septicemic plague, due to Yersinia pestis (Y. pestis) and prophylaxis for plague in adults and pediatric patients, 6 months of age and older. Efficacy studies of levofloxacin could not be conducted in humans with plague for ethical and feasibility reasons. Therefore, approval of this indication was based on an efficacy study conducted in animals.
Complicated Urinary Tract Infections: 5-day Treatment Regimen
Levonic is indicated for the treatment of complicated urinary tract infections due to Escherichia coli, Klebsiella pneumoniae, or Proteus mirabilis.
Complicated Urinary Tract Infections: 10-day Treatment Regimen
Levonic is indicated for the treatment of complicated urinary tract infections (mild to moderate) due to Enterococcus faecalis, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, or Pseudomonas aeruginosa.
Acute Pyelonephritis: 5 or 10-day Treatment Regimen
Levonic is indicated for the treatment of acute pyelonephritis caused by Escherichia coli, including cases with concurrent bacteremia.
Uncomplicated Urinary Tract Infections
Levonic is indicated for the treatment of uncomplicated urinary tract infections (mild to moderate) due to Escherichia coli, Klebsiella pneumoniae, or Staphylococcus saprophyticus.
Because fluoroquinolones, including levofloxacin, have been associated with serious adverse reactions and for some patients uncomplicated urinary tract infection is self-limiting, reserve levofloxacin for treatment of uncomplicated urinary tract infections in patients who have no alternative treatment options.
Acute Bacterial Exacerbation of Chronic Bronchitis
Levonic is indicated for the treatment of acute bacterial exacerbation of chronic bronchitis (ABECB) due to methicillin-susceptible Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Haemophilus parainfluenzae, or Moraxella catarrhalis.
Because fluoroquinolones, including levofloxacin, have been associated with serious adverse reactions and for some patients ABECB is selflimiting, reserve levofloxacin for treatment of ABECB in patients who have no alternative treatment options.
Acute Bacterial Sinusitis: 5-day and 10–14 day Treatment Regimens
Levonic is indicated for the treatment of acute bacterial sinusitis (ABS) due to Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis.
Because fluoroquinolones, including levofloxacin, have been associated with serious adverse reactions and for some patients ABS is self-limiting, reserve levofloxacin for treatment of ABS in patients who have no alternative treatment options.
Usage
To reduce the development of drug-resistant bacteria and maintain the effectiveness of Levonic and other antibacterial drugs, Levonic should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.
Culture and susceptibility testing
- Appropriate culture and susceptibility tests should be performed before treatment in order to isolate and identify organisms causing the infection and to determine their susceptibility to levofloxacin. Therapy with Levonic may be initiated before results of these tests are known; once results become available, appropriate therapy should be selected.
As with other drugs in this class, some isolates of Pseudomonas aeruginosa may develop resistance fairly rapidly during treatment with levofloxacin. Culture and susceptibility testing performed periodically during therapy will provide information about the continued susceptibility of the pathogens to the antimicrobial agent and also the possible emergence of bacterial resistance.
Dosage in Adult Patients with Normal Renal Function
The usual dose of levofloxacin solution for infusion is 250 mg or 500 mg administered by slow infusion over 60 minutes every 24 hours or 750 mg administered by slow infusion over 90 minutes every 24 hours, as indicated by infection and described in Table 1.
These recommendations apply to patients with creatinine clearance ≥ 50 ml/min. For patients with creatinine clearance <50 ml/min, adjustments to the dosing regimen are required.
Table 1: Dosage in Adult Patients with Normal Renal Function (creatinine clearance ≥ 50 ml/min)
Type of Infection* | Dosed Every 24 hours | Duration (days)† |
Nosocomial Pneumonia | 750 mg | 7–14 |
Community Acquired Pneumonia‡ | 500 mg | 7–14 |
Community Acquired Pneumonia§ | 750 mg | 5 |
Complicated Skin and Skin Structure Infections (SSSI) | 750 mg | 7–14 |
Uncomplicated SSSI | 500 mg | 7–10 |
Chronic Bacterial Prostatitis | 500 mg | 28 |
Inhalational Anthrax (Post-Exposure), adult and pediatric patients > 50 kg Þ,ß Pediatric patients < 50 kg and ≥ 6 months of ageÞ,ß | 500 mg see Table 2 below (2.2) | 60ß 60ß |
Plague, adult and pediatric patients > 50 kg à Pediatric patients < 50 kg and ≥ 6 months of age | 500 mg see Table 2 below (2.2) | 10 to 14 10 to 14 |
Complicated Urinary Tract Infection (cUTI) or Acute Pyelonephritis (AP)¶ | 750 mg | 5 |
Complicated Urinary Tract Infection (cUTI) or Acute Pyelonephritis (AP)# | 250 mg | 10 |
Uncomplicated Urinary Tract Infection | 250 mg | 3 |
Acute Bacterial Exacerbation of Chronic Bronchitis (ABECB) | 500 mg | 7 |
Acute Bacterial Sinusitis (ABS) | 750 mg | 5 |
500 mg | 10-14 |
* Due to the designated pathogens.
† Sequential therapy (intravenous to oral) may be instituted at the discretion of the physician.
‡ Due to methicillin-susceptible Staphylococcus aureus, Streptococcus pneumoniae (including multi-drug-resistant isolates [MDRSP]), Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Chlamydophila pneumoniae, Legionella pneumophila, or Mycoplasma pneumoniae.
§ Due to Streptococcus pneumoniae (excluding multi-drug-resistant isolates [MDRSP]), Haemophilus influenzae, Haemophilus parainfluenzae, Mycoplasma pneumoniae, or Chlamydophila pneumoniae.
¶ This regimen is indicated for cUTI due to Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and AP due to E. coli, including cases with concurrent bacteremia.
# This regimen is indicated for cUTI due to Enterococcus faecalis, Enterococcus cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa; and for AP due to E. coli.
Þ Drug administration should begin as soon as possible after suspected or confirmed exposure to aerosolized B. anthracis. This indication is based on a surrogate endpoint. Levofloxacin plasma concentrations achieved in humans are reasonably likely to predict clinical benefit.
ß The safety of levofloxacin in adults for durations of therapy beyond 28 days or in pediatric patients for durations beyond 14 days has not been studied. An increased incidence of musculoskeletal adverse events compared to controls has been observed in pediatric patients. Prolonged levofloxacin therapy should only be used when the benefit outweighs the risk.
à Drug administration should begin as soon as possible after suspected or confirmed exposure to Yersinia pestis. Higher doses of levofloxacin typically used for treatment of pneumonia can be used for treatment of plague, if clinically indicated.
Dosage in Pediatric Patients
The dosage in pediatric patients ≥ 6 months of age is described below in Table 2.
Table 2: Dosage in Pediatric Patients ≥ 6 months of age
Type of Infection* | Dose | Freq. Once every | Duration† |
Inhalational Anthrax (post-exposure)‡,§ | |||
Pediatric patients > 50 kg | 500 mg | 24 hr | 60 days§ |
Pediatric patients < 50 kg and ≥ 6 months of age | 8 mg/kg (not to exceed 250 mg per dose) | 12 hr | 60 days§ |
Plague¶ | |||
Pediatric patients > 50 kg | 500 mg | 24 hr | 10 to 14 days |
Pediatric patients < 50 kg and ≥ 6 months of age | 8 mg/kg (not to exceed 250 mg per dose) | 12 hr | 10 to 14 days |
* Due to Bacillus anthracis and Yersinia pestis.
† Sequential therapy (intravenous to oral) may be instituted at the discretion of the physician.
‡ Drug administration should begin as soon as possible after suspected or confirmed exposure to aerosolized B. anthracis. This indication is based on a surrogate endpoint. Levofloxacin plasma concentrations achieved in humans are reasonably likely to predict clinical benefit.
§ The safety of levofloxacin in pediatric patients for durations of therapy beyond 14 days has not been studied. An increased incidence of musculoskeletal adverse events compared to controls has been observed in pediatric patients. Prolonged levofloxacin therapy should only be used when the benefit outweighs the risk.
¶ Drug administration should begin as soon as possible after suspected or confirmed exposure to Yersinia pestis.
Geriatric Use
Geriatric patients are at increased risk for developing severe tendon disorders including tendon rupture when being treated with a fluoroquinolone such as levofloxacin. This risk is further increased in patients receiving concomitant corticosteroid therapy. Tendinitis or tendon rupture can involve the Achilles, hand, shoulder, or other tendon sites and can occur during or after completion of therapy; cases occurring up to several months after fluoroquinolone treatment have been reported. Caution should be used when prescribing levofloxacin to elderly patients especially those on corticosteroids. Patients should be informed of this potential side effect and advised to discontinue levofloxacin and contact their healthcare provider if any symptoms of tendinitis or tendon rupture occur.
In Phase 3 clinical trials, 1,945 levofloxacin-treated patients (26%) were ≥ 65 years of age. Of these, 1,081 patients (14%) were between the ages of 65 and 74 and 864 patients (12%) were 75 years or older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, but greater sensitivity of some older individuals cannot be ruled out.
Severe, and sometimes fatal, cases of hepatotoxicity have been reported post-marketing in association with levofloxacin. The majority of fatal hepatotoxicity reports occurred in patients 65 years of age or older and most were not associated with hypersensitivity. Levofloxacin should be discontinued immediately if the patient develops signs and symptoms of hepatitis.
Elderly patients may be more susceptible to drug-associated effects on the QT interval. Therefore, precaution should be taken when using levofloxacin with concomitant drugs that can result in prolongation of the QT interval (e.g., Class IA or Class III antiarrhythmics) or in patients with risk factors for torsade de pointes (e.g., known QT prolongation, uncorrected hypokalemia).
The pharmacokinetic properties of levofloxacin in younger adults and elderly adults do not differ significantly when creatinine clearance is taken into consideration. However, since the drug is known to be substantially excreted by the kidney, the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.
Hepatic Impairment
Pharmacokinetic studies in hepatically impaired patients have not been conducted. Due to the limited extent of levofloxacin metabolism, the pharmacokinetics of levofloxacin are not expected to be affected by hepatic impairment.
Renal Impairment
Administer levofloxacin with caution in the presence of renal insufficiency. Careful clinical observation and appropriate laboratory studies should be performed prior to and during therapy since elimination of levofloxacin may be reduced.
No adjustment is necessary for patients with a creatinine clearance ≥ 50 ml/min.
In patients with impaired renal function (creatinine clearance < 50 ml/min), adjustment of the dosage regimen is necessary to avoid the accumulation of levofloxacin due to decreased clearance.
Table 3 shows how to adjust dose based on creatinine clearance.
Table 3: Dosage Adjustment in Adult Patients with Renal Impairment (creatinine clearance < 50 ml/min)
Dosage in Normal Renal Function Every 24 hours | Creatinine Clearance 20 to 49 ml/min | Creatinine Clearance 10 to 19 ml/min | Hemodialysis or Chronic Ambulatory Peritoneal Dialysis (CAPD) |
750 mg | 750 mg every 48 hours | 750 mg initial dose, then 500 mg every 48 hours | 750 mg initial dose, then 500 mg every 48 hours |
500 mg | 500 mg initial dose, then 250 mg every 24 hours | 500 mg initial dose, then 250 mg every 48 hours | 500 mg initial dose, then 250 mg every 48 hours |
250 mg | No dosage adjustment required | 250 mg every 48 hours. If treating uncomplicated UTI, then no dosage adjustment is required | No information on dosing adjustment is available |
Drug Interaction With Chelation Agents: Antacids, Sucralfate, Metal Cations, Multivitamins
Levofloxacin solution for infusion should not be co-administered with any solution containing multivalent cations, e.g., magnesium, through the same intravenous line.
Administration Instructions
Caution: Rapid or bolus intravenous infusion of levofloxacin has been associated with hypotension and must be avoided. Levofloxacin solution for infusion should be infused intravenously slowly over a period of not less than 60 or 90 minutes, depending on the dosage. Levofloxacin solution for infusion should be administered only by intravenous infusion. It is not for intramuscular, intrathecal, intraperitoneal, or subcutaneous administration.
Hydration for Patients Receiving levofloxacin
Adequate hydration of patients receiving oral or intravenous Levofloxacin should be maintained to prevent the formation of highly concentrated urine. Crystalluria and cylindruria have been reported with quinolones.
Preparation of Intravenous Product
Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.
Because only limited data are available on the compatibility of levofloxacin solution for infusion with other intravenous substances, additives or other medications should not be added to levofloxacin solution for infusion, or infused simultaneously through the same intravenous line. If the same intravenous line is used for sequential infusion of several different drugs, the line should be flushed before and after infusion of levofloxacin solution for infusion with an infusion solution compatible with levofloxacin solution for infusion and with any other drug(s) administered via this common line.
Levonic solution for infusion (5 mg/ml)
Levonic solution for infusion is supplied in bags within a foil overwrap. These contain a premixed, ready to use levofloxacin solution in 5% dextrose (D5W) for single-use. The 200 ml bags contain 750 mg/150 ml of levofloxacin solution. The concentration of each container is 5 mg/ml. No further dilution of these preparations is necessary. Because the premix bags are for single-use only, any unused portion should be discarded.
Instructions for the use of Levonic:
- Tear outer wrap at the notch and remove solution bag.
- Check for minute leaks by squeezing the inner bag firmly. If leaks are found, or if the seal is not intact, discard the solution, as the sterility may be compromised.
- Do not use if the solution is cloudy or a precipitate is present.
- Use sterile equipment.
- WARNING: Do not use bags in series connections. Such use could result in air embolism due to residual air being drawn from the primary bag before administration of the fluid from the secondary bag is complete.
Preparation for Administration:
- Close flow control clamp of administration set.
- Remove cover from port at bottom of bag.
- Insert piercing pin of administration set into port with a twisting motion until the pin is firmly seated.
- Suspend the bag from hanger.
- Squeeze and release drip chamber to establish proper fluid level in chamber during infusion of Levonic.
- Open flow control clamp to expel air from set. Close clamp.
- Regulate rate of administration with flow control clamp.
Disabling and Potentially Irreversible Serious Adverse Reactions Including Tendinitis and Tendon Rupture, Peripheral Neuropathy, and Central Nervous System Effects
Fluoroquinolones, including levofloxacin, have been associated with disabling and potentially irreversible serious adverse reactions from different body systems that can occur together in the same patient. Commonly seen adverse reactions include tendinitis, tendon rupture, arthralgia, myalgia, peripheral neuropathy, and central nervous system effects (hallucinations, anxiety, depression, insomnia, severe headaches, and confusion). These reactions can occur within hours to weeks after starting levofloxacin. Patients of any age or without pre-existing risk factors have experienced these adverse reactions.
Discontinue levofloxacin immediately at the first signs or symptoms of any serious adverse reaction. In addition, avoid the use of fluoroquinolones, including levofloxacin, in patients who have experienced any of these serious adverse reactions associated with fluoroquinolones.
Tendinitis and Tendon Rupture
Fluoroquinolones, including levofloxacin, have been associated with an increased risk of tendinitis and tendon rupture in all ages. This adverse reaction most frequently involves the Achilles tendon and has also been reported with the rotator cuff (the shoulder), the hand, the biceps, the thumb, and other tendon sites. Tendinitis or tendon rupture can occur within hours or days of starting levofloxacin or as long as several months after completion of fluoroquinolone therapy. Tendinitis and tendon rupture can occur bilaterally.
The risk of developing fluoroquinolone-associated tendinitis and tendon rupture is increased in patients over 60 years of age, in those taking corticosteroid drugs, and in patients with kidney, heart or lung transplants. Other factors that may independently increase the risk of tendon rupture include strenuous physical activity, renal failure, and previous tendon disorders such as rheumatoid arthritis. Tendinitis and tendon rupture have been reported in patients taking fluoroquinolones who do not have the above risk factors. Discontinue levofloxacin immediately if the patient experiences pain, swelling, inflammation or rupture of a tendon. Patients should be advised to rest at the first sign of tendinitis or tendon rupture, and to contact their healthcare provider regarding changing to a non-quinolone antimicrobial drug. Avoid levofloxacin in patients who have a history of tendon disorders or tendon rupture.
Peripheral Neuropathy
Fluoroquinolones, including levofloxacin, have been associated with an increased risk of peripheral neuropathy. Cases of sensory or sensorimotor axonal polyneuropathy affecting small and/or large axons resulting in paresthesias, hypoesthesias, dysesthesias and weakness have been reported in patients receiving fluoroquinolones, including levofloxacin. Symptoms may occur soon after initiation of levofloxacin and may be irreversible in some patients.
Discontinue levofloxacin immediately if the patient experiences symptoms of neuropathy including pain, burning, tingling, numbness, and/or weakness or other alterations of sensation including light touch, pain, temperature, position sense, and vibratory sensation. Avoid fluoroquinolones, including levofloxacin, in patients who have previously experienced peripheral neuropathy.
Central Nervous System Effects
Fluoroquinolones, including levofloxacin, have been associated with an increased risk of central nervous system (CNS) effects, including convulsions, toxic psychoses, increased intracranial pressure (including pseudotumor cerebri) . Fluoroquinolones may also cause central nervous system stimulation which may lead to tremors, restlessness, anxiety, lightheadedness, confusion, hallucinations, paranoia, depression, nightmares, and insomnia. Suicidal thoughts, and attempted or completed suicide may also occur, especially in patients with a medical history of depression, or an underlying risk factor for depression. These reactions may occur following the first dose. If these reactions occur in patients receiving levofloxacin, discontinue levofloxacin and institute appropriate measures. As with other fluoroquinolones, levofloxacin should be used with caution in patients with a known or suspected central nervous system (CNS) disorder that may predispose them to seizures or lower the seizure threshold (e.g., severe cerebral arteriosclerosis, epilepsy) or in the presence of other risk factors that may predispose them to seizures or lower the seizure threshold (e.g., certain drug therapy, renal dysfunction).
Exacerbation of Myasthenia Gravis
Fluoroquinolones, including levofloxacin, have neuromuscular blocking activity and may exacerbate muscle weakness in patients with myasthenia gravis. Postmarketing serious adverse reactions including deaths and requirement for ventilatory support, have been associated with fluoroquinolone use in patients with myasthenia gravis. Avoid levofloxacin in patients with a known history of myasthenia gravis.
Other Serious and Sometimes Fatal Adverse Reactions
Other serious and sometimes fatal adverse reactions, some due to hypersensitivity, and some due to uncertain etiology, have been reported rarely in patients receiving therapy with fluoroquinolones, including levofloxacin. These events may be severe and generally occur following the administration of multiple doses. Clinical manifestations may include one or more of the following:
- Fever, rash, or severe dermatologic reactions (e.g., toxic epidermal necrolysis, StevensJohnson Syndrome);
- Vasculitis; arthralgia; myalgia; serum sickness;
- Allergic pnemoniis;
- Interstitial nephritis; acute renal insufficiency or failure;
- Hepatitis; jaundice; acute hepatic necrosis or failure;
- Anemia, including hemolytic and aplastic; thrombocytopenia, including thrombotic thrombocytopenic purpura; leukopenia; agranulocytosis; pancytopenia; and/or other hematologic abnormalities.
Discontinue levofloxacin immediately at the first appearance of skin rash, jaundice, or any other sign of hypersensitivity and institute supportive measures.
Hypersensitivity Reactions
Serious and occasionally fatal hypersensitivity and/or anaphylactic reactions have been reported in patients receiving therapy with fluoroquinolones, including levofloxacin. These reactions often occur following the first dose. Some reactions have been accompanied by cardiovascular collapse, hypotension/shock, seizure, loss of consciousness, tingling, angioedema (including tongue, laryngeal, throat, or facial edema/swelling), airway obstruction (including bronchospasm, shortness of breath, and acute respiratory distress), dyspnea, urticaria, itching, and other serious skin reactions. Levofloxacin should be discontinued immediately at the first appearance of a skin rash or any other sign of hypersensitivity. Serious acute hypersensitivity reactions may require treatment with epinephrine and other resuscitative measures, including oxygen, intravenous fluids, antihistamines, corticosteroids, pressor amines, and airway management, as clinically indicated.
Hepatotoxicity
Post-marketing reports of severe hepatotoxicity (including acute hepatitis and fatal events) have been received for patients treated with levofloxacin. No evidence of serious drug-associated hepatotoxicity was detected in clinical trials of over 7,000 patients. Severe hepatotoxicity generally occurred within 14 days of initiation of therapy and most cases occurred within 6 days. Most cases of severe hepatotoxicity were not associated with hypersensitivity. The majority of fatal hepatotoxicity reports occurred in patients 65 years of age or older and most were not associated with hypersensitivity. Levofloxacin should be discontinued immediately if the patient develops signs and symptoms of hepatitis.
Aortic aneurysm and dissection, and heart valve regurgitation/incompetence
Epidemiologic studies report an increased risk of aortic aneurysm and dissection, particularly in elderly patients, and of aortic and mitral valve regurgitation after intake of fluoroquinolones. Cases of aortic aneurysm and dissection, sometimes complicated by rupture (including fatal ones), and of regurgitation/incompetence of any of the heart valves have been reported in patients receiving fluoroquinolones (see section 4.8).
Therefore, fluoroquinolones should only be used after careful benefit/risk assessment and after consideration of other therapeutic options in patients with positive family history of aneurysm disease or congenital heart valve disease, in patients diagnosed with pre-existing aortic aneurysm and/or aortic dissection or heart valve disease, or in presence of other risk factors or conditions predisposing
- For both aortic aneurysm and dissection and heart valve regurgitation/incompetence (e.g. connective tissue disorders such as Marfan syndrome or, Ehlers-Danlos syndrome, Turner syndrome, Behcet's disease, hypertension, rheumatoid arthritis), or additionally
- For aortic aneurysm and dissection (e.g. vascular disorders such as Takayasu arteritis or giant cell arteritis, or known atherosclerosis, or Sjögren's syndrome) or additionally
- For heart valve regurgitation/incompetence (e.g. infective endocarditis).
The risk of aortic aneurysm and dissection, and their rupture may also be increased in patients treated concurrently with systemic corticosteroids.
In case of sudden abdominal, chest or back pain, patients should be advised to immediately consult a physician in an emergency department (see section 4.8).
Patients should be advised to seek immediate medical attention in case of acute dyspnoea, new onset of heart palpitations, or development of oedema of the abdomen or lower extremities.
Clostridium difficile-Associated Diarrhea
Clostridium difficile-associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including levofloxacin, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.
C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.
If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.
Prolongation of the QT Interval
Some fluoroquinolones, including levofloxacin, have been associated with prolongation of the QT interval on the electrocardiogram and infrequent cases of arrhythmia. Rare cases of torsade de pointes have been spontaneously reported during postmarketing surveillance in patients receiving fluoroquinolones, including levofloxacin. Levofloxacin should be avoided in patients with known prolongation of the QT interval, patients with uncorrected hypokalemia, and patients receiving Class IA (quinidine, procainamide), or Class III (amiodarone, sotalol) antiarrhythmic agents. Elderly patients may be more susceptible to drug-associated effects on the QT interval.
Musculoskeletal Disorders in Pediatric Patients and Arthropathic Effects in Animals
Levonic is indicated in pediatric patients (6 months of age and older) only for the prevention of inhalational anthrax (post-exposure) and for plague. An increased incidence of musculoskeletal disorders (arthralgia, arthritis, tendinopathy, and gait abnormality) compared to controls has been observed in pediatric patients receiving levofloxacin.
In immature rats and dogs, the oral and intravenous administration of levofloxacin resulted in increased osteochondrosis. Histopathological examination of the weight-bearing joints of immature dogs dosed with levofloxacin revealed persistent lesions of the cartilage. Other fluoroquinolones also produce similar erosions in the weight-bearing joints and other signs of arthropathy in immature animals of various species.
Blood Glucose Disturbances
As with other fluoroquinolones, disturbances of blood glucose, including symptomatic hyper- and hypoglycemia, have been reported with levofloxacin, usually in diabetic patients receiving concomitant treatment with an oral hypoglycemic agent (e.g., glyburide) or with insulin. In these patients, careful monitoring of blood glucose is recommended. If a hypoglycemic reaction occurs in a patient being treated with levofloxacin, levofloxacin should be discontinued and appropriate therapy should be initiated immediately.
Photosensitivity/Phototoxicity
Moderate to severe photosensitivity/phototoxicity reactions, the latter of which may manifest as exaggerated sunburn reactions (e.g., burning, erythema, exudation, vesicles, blistering, edema) involving areas exposed to light (typically the face, “V” area of the neck, extensor surfaces of the forearms, dorsa of the hands), can be associated with the use of fluoroquinolones after sun or UV light exposure. Therefore, excessive exposure to these sources of light should be avoided. Drug therapy should be discontinued if photosensitivity/phototoxicity occurs.
Development of Drug Resistant Bacteria
Prescribing Levonic in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.
Levonic contains sodium
Levonic contains sodium. This medicine contains less than 1 mmol sodium (23 mg) per 150 ml, that is to say essentially ‘sodium-free’.
Chelation Agents: Antacids, Sucralfate, Metal Cations, Multivitamins
There are no data concerning an interaction of intravenous fluoroquinolones with oral antacids, sucralfate, multivitamins, didanosine, or metal cations. However, no fluoroquinolone should be co-administered with any solution containing multivalent cations, e.g., magnesium, through the same intravenous line.
Warfarin
No significant effect of levofloxacin on the peak plasma concentrations, AUC, and other disposition parameters for R- and S- warfarin was detected in a clinical study involving healthy volunteers. Similarly, no apparent effect of warfarin on levofloxacin absorption and disposition was observed. However, there have been reports during the post-marketing experience in patients that levofloxacin enhances the effects of warfarin. Elevations of the prothrombin time in the setting of concurrent warfarin and levofloxacin use have been associated with episodes of bleeding. Prothrombin time, International Normalized Ratio (INR), or other suitable anticoagulation tests should be closely monitored if levofloxacin is administered concomitantly with warfarin. Patients should also be monitored for evidence of bleeding.
Antidiabetic Agents
Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with fluoroquinolones and an antidiabetic agent. Therefore, careful monitoring of blood glucose is recommended when these agents are co-administered.
Non-Steroidal Anti-Inflammatory Drugs
The concomitant administration of a non-steroidal anti-inflammatory drug with a fluoroquinolone, including levofloxacin, may increase the risk of CNS stimulation and convulsive seizures.
Theophylline
No significant effect of levofloxacin on the plasma concentrations, AUC, and other disposition parameters for theophylline was detected in a clinical study involving healthy volunteers. Similarly, no apparent effect of theophylline on levofloxacin absorption and disposition was observed. However, concomitant administration of other fluoroquinolones with theophylline has resulted in prolonged elimination half-life, elevated serum theophylline levels, and a subsequent increase in the risk of theophylline-related adverse reactions in the patient population. Therefore, theophylline levels should be closely monitored and appropriate dosage adjustments made when levofloxacin is co-administered. Adverse reactions, including seizures, may occur with or without an elevation in serum theophylline levels.
Cyclosporine
No significant effect of levofloxacin on the peak plasma concentrations, AUC, and other disposition parameters for cyclosporine was detected in a clinical study involving healthy volunteers. However, elevated serum levels of cyclosporine have been reported in the patient population when co-administered with some other fluoroquinolones. Levofloxacin Cmax and ke were slightly lower while Tmax and t½ were slightly longer in the presence of cyclosporine than those observed in other studies without concomitant medication. The differences, however, are not considered to be clinically significant. Therefore, no dosage adjustment is required for levofloxacin or cyclosporine when administered concomitantly.
Digoxin
No significant effect of levofloxacin on the peak plasma concentrations, AUC, and other disposition parameters for digoxin was detected in a clinical study involving healthy volunteers. Levofloxacin absorption and disposition kinetics were similar in the presence or absence of digoxin. Therefore, no dosage adjustment for levofloxacin or digoxin is required when administered concomitantly.
Probenecid and Cimetidine
No significant effect of probenecid or cimetidine on the Cmax of levofloxacin was observed in a clinical study involving healthy volunteers. The AUC and t½ of levofloxacin were higher while CL/F and CLR were lower during concomitant treatment of levofloxacin with probenecid or cimetidine compared to levofloxacin alone. However, these changes do not warrant dosage adjustment for levofloxacin when probenecid or cimetidine is co-administered.
Interactions with Laboratory or Diagnostic Testing
Some fluoroquinolones, including levofloxacin, may produce false-positive urine screening results for opiates using commercially available immunoassay kits. Confirmation of positive opiate screens by more specific methods may be necessary.
Pregnancy
Pregnancy Category C.
Levofloxacin was not teratogenic in rats at oral doses as high as 810 mg/kg/day which corresponds to 9.4 times the highest recommended human dose based upon relative body surface area, or at intravenous doses as high as 160 mg/kg/day corresponding to 1.9 times the highest recommended human dose based upon relative body surface area. The oral dose of 810 mg/kg/day to rats caused decreased fetal body weight and increased fetal mortality. No teratogenicity was observed when rabbits were dosed orally as high as 50 mg/kg/day which corresponds to 1.1 times the highest recommended human dose based upon relative body surface area, or when dosed intravenously as high as 25 mg/kg/day, corresponding to 0.5 times the highest recommended human dose based upon relative body surface area.
There are, however, no adequate and well-controlled studies in pregnant women. Levofloxacin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
Breast Feeding
Based on data on other fluoroquinolones and very limited data on levofloxacin, it can be presumed that levofloxacin will be excreted in human milk. Because of the potential for serious adverse reactions from levofloxacin in nursing infants, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.
Some undesirable effects (e.g. dizziness/vertigo, drowsiness, visual disturbances) may impair the patient's ability to concentrate and react, and therefore may constitute a risk in situations where these abilities are of special importance (e.g. driving a car or operating machinery).
Serious and otherwise important adverse reactions
The following serious and otherwise important adverse drug reactions are discussed in greater detail in other sections of labeling:
- Disabling and Potentially Irreversible Serious Adverse Reactions
- Tendinitis and Tendon Rupture
- Peripheral Neuropathy
- Central Nervous System Effects
- Exacerbation of Myasthenia Gravis
- Other Serious and Sometimes Fatal Reactions
- Hypersensitivity Reactions
- Hepatotoxicity
- Clostridium difficile-Associated Diarrhea
- Prolongation of the QT Interval
- Musculoskeletal Disorders in Pediatric Patients
- Blood Glucose Disturbances
- Photosensitivity/Phototoxicity
- Development of Drug Resistant Bacteria
Hypotension has been associated with rapid or bolus intravenous infusion of levofloxacin. levofloxacin should be infused slowly over 60 to 90 minutes, depending on dosage.
Crystalluria and cylindruria have been reported with quinolones, including levofloxacin. Therefore, adequate hydration of patients receiving levofloxacin should be maintained to prevent the formation of a highly concentrated urine.
Clinical Trial Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
The data described below reflect exposure to levofloxacin in 7537 patients in 29 pooled Phase 3 clinical trials. The population studied had a mean age of 50 years (approximately 74% of the population was < 65 years of age), 50% were male, 71% were Caucasian, 19% were Black. Patients were treated with levofloxacin for a wide variety of infectious diseases. Patients received levofloxacin doses of 750 mg once daily, 250 mg once daily, or 500 mg once or twice daily. Treatment duration was usually 3–14 days, and the mean number of days on therapy was 10 days.
The overall incidence, type and distribution of adverse reactions was similar in patients receiving levofloxacin doses of 750 mg once daily, 250 mg once daily, and 500 mg once or twice daily. Discontinuation of levofloxacin due to adverse drug reactions occurred in 4.3% of patients overall, 3.8% of patients treated with the 250 mg and 500 mg doses and 5.4% of patients treated with the 750 mg dose. The most common adverse drug reactions leading to discontinuation with the 250 and 500 mg doses were gastrointestinal (1.4%), primarily nausea (0.6%); vomiting (0.4%); dizziness (0.3%); and headache (0.2%). The most common adverse drug reactions leading to discontinuation with the 750 mg dose were gastrointestinal (1.2%), primarily nausea (0.6%), vomiting (0.5%); dizziness (0.3%); and headache (0.3%).
Adverse reactions occurring in ≥1% of levofloxacin-treated patients and less common adverse reactions, occurring in 0.1 to <1% of levofloxacin-treated patients, are shown in Table 4 and Table 5, respectively. The most common adverse drug reactions (≥3%) are nausea, headache, diarrhea, insomnia, constipation, and dizziness.
Table 4: Common (≥1%) Adverse Reactions Reported in Clinical Trials with levofloxacin
System/Organ Class | Adverse Reaction | % (N = 7537) |
Infections and Infestations | moniliasis | 1 |
Psychiatric Disorders | Insomnia* | 4 |
Nervous System Disorders | headache dizziness | 6 3 |
Respiratory, Thoracic and Mediastinal Disorders | dyspnea | 1 |
Gastrointestinal Disorders
| nausea diarrhea constipation abdominal pain vomiting dyspepsia | 7 5 3 2 2 2 |
Skin and Subcutaneous Tissue Disorders | rash pruritus | 2 1 |
Reproductive System and Breast Disorders | vaginitis | 1† |
General Disorders and Administration Site Conditions | edema injection site reaction chest pain | 1 1 1 |
* N = 7274
† N = 3758 (women)
Table 5: Less Common (0.1 to 1%) Adverse Reactions Reported in Clinical Trials with levofloxacin (N = 7537)
System/Organ Class | Adverse Reaction |
Infections and Infestations | genital moniliasis |
Blood and Lymphatic System Disorders | anemia thrombocytopenia granulocytopenia |
Immune System Disorders | allergic reaction |
Metabolism and Nutrition Disorders | hyperglycemia hypoglycemia hyperkalemia |
Psychiatric Disorders | anxiety agitation confusion depression hallucination nightmare* sleep disorder* anorexia abnormal dreaming* |
Nervous System Disorders | tremor convulsions paresthesia vertigo hypertonia hyperkinesias abnormal gait somnolence* syncope |
Respiratory, Thoracic and Mediastinal Disorders | epistaxis |
Cardiac Disorders | cardiac arrest palpitation ventricular tachycardia ventricular arrhythmia |
Vascular Disorders | phlebitis |
Gastrointestinal Disorders | gastritis stomatitis pancreatitis esophagitis gastroenteritis glossitis pseudomembranous/ C. difficile colitis |
Hepatobiliary Disorders | abnormal hepatic function increased hepatic enzymes increased alkaline phosphatase |
Skin and Subcutaneous Tissue Disorders | urticaria |
Musculoskeletal and Connective Tissue Disorders | arthralgia tendinitis myalgia skeletal pain |
Renal and Urinary Disorders | abnormal renal function acute renal failure |
* N = 7274
In clinical trials using multiple-dose therapy, ophthalmologic abnormalities, including cataracts and multiple punctate lenticular opacities, have been noted in patients undergoing treatment with quinolones, including levofloxacin. The relationship of the drugs to these events is not presently established.
Postmarketing Experience
Table 6 lists adverse reactions that have been identified during post-approval use of levofloxacin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Table 6: Postmarketing Reports Of Adverse Drug Reactions
System/Organ Class | Adverse Reaction |
Blood and Lymphatic System Disorders | pancytopenia aplastic anemia leukopenia hemolytic anemia eosinophilia |
Immune System Disorders | hypersensitivity reactions, sometimes fatal including: anaphylactic/anaphylactoid reactions anaphylactic shock angioneurotic edema serum sickness |
Psychiatric Disorders | psychosis paranoia isolated reports of suicidal ideation, suicide attempt and completed suicide |
Nervous System Disorders | exacerbation of myasthenia gravis anosmia ageusia parosmia dysgeusia peripheral neuropathy (may be irreversible) isolated reports of encephalopathy abnormal electroencephalogram (EEG) dysphonia pseudotumor cerebri |
Eye Disorders | uveitis vision disturbance, including diplopia visual acuity reduced vision blurred scotoma |
Ear and Labyrinth Disorders | hypoacusis tinnitus |
Cardiac Disorders | isolated reports of torsade de pointes electrocardiogram QT prolonged tachycardia |
Vascular Disorders | vasodilatation |
Respiratory, Thoracic and Mediastinal Disorders | isolated reports of allergic pneumonitis |
Hepatobiliary Disorders | hepatic failure (including fatal cases) hepatitis jaundice |
Skin and Subcutaneous Tissue Disorders | bullous eruptions to include: Stevens-Johnson Syndrome toxic epidermal necrolysis Acute Generalized Exanthematous Pustulosis (AGEP) fixed drug eruptions erythema multiforme photosensitivity/phototoxicity reaction leukocytoclastic vasculitis |
Musculoskeletal and Connective Tissue Disorders | tendon rupture muscle injury, including rupture rhabdomyolysis |
Renal and Urinary Disorders | interstitial nephritis |
General Disorders and Administration Site Conditions | multi-organ failure pyrexia |
Investigations | prothrombin time prolonged international normalized ratio prolonged muscle enzymes increased |
The information given below is based on data from clinical studies in more than 8,300 patients and on extensive post marketing experience.
Cardiac and vascular disorders:
Cases of aortic aneurysm and dissection, sometimes complicated by rupture (including fatal ones), and of regurgitation/incompetence of any of the heart valves have been reported in patients receiving fluoroquinolones (see section 4.4).
Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via:
- Saudi Arabia
The National Pharmacovigilance Centre (NPC)
SFDA Call Center: 19999
E-mail: npc.drug@sfda.gov.sa
Website: https://ade.sfda.gov.sa
- Other GCC States
Please contact the relevant competent authority.
In the event of an acute overdosage, the stomach should be emptied. The patient should be observed and appropriate hydration maintained. Levofloxacin is not efficiently removed by hemodialysis or peritoneal dialysis.
Levofloxacin exhibits a low potential for acute toxicity. Mice, rats, dogs and monkeys exhibited the following clinical signs after receiving a single high dose of levofloxacin: ataxia, ptosis, decreased locomotor activity, dyspnea, prostration, tremors, and convulsions. Doses in excess of 1500 mg/kg orally and 250 mg/kg IV produced significant mortality in rodents.
Description
Levofloxacin is a synthetic broad-spectrum antibacterial agent for oral and intravenous administration. Chemically, levofloxacin, a chiral fluorinated carboxyquinolone, is the pure (-)- (S)-enantiomer of the racemic drug substance ofloxacin. The chemical name is (-)-(S)-9-fluoro- 2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine- 6-carboxylic acid hemihydrate.
Figure 1: The Chemical Structure of Levofloxacin
The empirical formula is C18H20FN3O4 • ½ H2O and the molecular weight is 370.38.
The data demonstrate that from pH 0.6 to 5.8, the solubility of levofloxacin is essentially constant (approximately 100 mg/ml). Levofloxacin is considered soluble to freely soluble in this pH range, as defined by USP nomenclature. Above pH 5.8, the solubility increases rapidly to its maximum at pH 6.7 (272 mg/ml) and is considered freely soluble in this range. Above pH 6.7, the solubility decreases and reaches a minimum value (about 50 mg/ml) at a pH of approximately 6.9.
Levofloxacin has the potential to form stable coordination compounds with many metal ions. This in vitro chelation potential has the following formation order: Al+3>Cu+2>Zn+2>Mg+2>Ca+2 .
Microbiology
Mechanism of Action
Levofloxacin is the L-isomer of the racemate, ofloxacin, a quinolone antimicrobial agent. The antibacterial activity of ofloxacin resides primarily in the L-isomer. The mechanism of action of levofloxacin and other fluoroquinolone antimicrobials involves inhibition of bacterial topoisomerase IV and DNA gyrase (both of which are type II topoisomerases), enzymes required for DNA replication, transcription, repair and recombination.
Mechanism of Resistance
Fluoroquinolone resistance can arise through mutations in defined regions of DNA gyrase or topoisomerase IV, termed the Quinolone-Resistance Determining Regions (QRDRs), or through altered efflux.
Fluoroquinolones, including levofloxacin, differ in chemical structure and mode of action from aminoglycosides, macrolides and β-lactam antibiotics, including penicillins. Fluoroquinolones may, therefore, be active against bacteria resistant to these antimicrobials.
Resistance to levofloxacin due to spontaneous mutation in vitro is a rare occurrence (range: 10-9 to 10-10). Cross-resistance has been observed between levofloxacin and some other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to levofloxacin.
Activity in vitro and in vivo
Levofloxacin has in vitro activity against Gram-negative and Gram-positive bacteria.
Levofloxacin has been shown to be active against most isolates of the following bacteria both in vitro and in clinical infections as described in Indications and Usage (1):
Gram-Positive Bacteria
Enterococcus faecalis
Staphylococcus aureus (methicillin-susceptible isolates)
Staphylococcus epidermidis (methicillin-susceptible isolates)
Staphylococcus saprophyticus
Streptococcus pneumoniae (including multi-drug resistant isolates [MDRSP]1 )
Streptococcus pyogenes
1 MDRSP (Multi-drug resistant Streptococcus pneumoniae) isolates are isolates resistant to two or more of the following antibiotics: penicillin (MIC ≥2 mcg/ml), 2nd generation cephalosporins, e.g., cefuroxime; macrolides, tetracyclines and trimethoprim/sulfamethoxazole.
Gram-Negative Bacteria
Enterobacter cloacae
Escherichia coli
Haemophilus influenzae
Haemophilus parainfluenzae
Klebsiella pneumoniae
Legionella pneumophila
Moraxella catarrhalis
Proteus mirabilis
Pseudomonas aeruginosa
Serratia marcescens
Other Bacteria
Chlamydophila pneumoniae
Mycoplasma pneumoniae
The following in vitro data are available, but their clinical significance is unknown: Levofloxacin exhibits in vitro minimum inhibitory concentrations (MIC values) of 2 mcg/ml or less against most (≥90%) isolates of the following microorganisms; however, the safety and effectiveness of levofloxacin in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials.
Gram-Positive Bacteria
Staphylococcus haemolyticus
β-hemolytic Streptococcus (Group C/F)
β-hemolytic Streptococcus (Group G)
Streptococcus agalactiae
Streptococcus milleri
Viridans group streptococci
Bacillus anthracis
Gram-Negative Bacteria
Acinetobacter baumannii
Acinetobacter lwoffii
Bordetella pertussis
Citrobacter koseri
Citrobacter freundii
Enterobacter aerogenes
Enterobacter sakazakii
Klebsiella oxytoca
Morganella morganii
Pantoea agglomerans
Proteus vulgaris
Providencia rettgeri
Providencia stuartii
Pseudomonas fluorescens
Yersinia pestis
Anaerobic Gram-Positive Bacteria
Clostridium perfringens
Susceptibility Tests
When available, the clinical microbiology laboratory should provide the results of in vitro susceptibility test results for antimicrobial drug products used in the resident hospitals to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment.
Dilution techniques:
Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC values should be determined using a standardized procedure. Standardized procedures are based on a dilution method1,2,4 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of levofloxacin powder. The MIC values should be interpreted according to the criteria outlined in Table 7.
Diffusion techniques:
Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2,3 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 5 mcg levofloxacin to test the susceptibility of bacteria to levofloxacin.
Reports from the laboratory providing results of the standard single-disk susceptibility test with a 5 mcg levofloxacin disk should be interpreted according to the criteria outlined in Table 7.
Table 7: Susceptibility Test Interpretive Criteria for Levofloxacin
| Minimum Inhibitory Concentrations (mcg/ml) | Disk Diffusion (zone diameter in mm) | ||||
Pathogen | S | I | R | S | I | R |
Enterobacteriaceae | ≤2 | 4 | ≥8 | ≥17 | 14–16 | ≤13 |
Enterococcus faecalis | ≤2 | 4 | ≥8 | ≥17 | 14–16 | ≤13 |
Staphylococcus species | ≤2 | 4 | ≥8 | ≥17 | 14–16 | ≤13 |
Pseudomonas aeruginosa | ≤2 | 4 | ≥8 | ≥17 | 14–16 | ≤13 |
Haemophilus influenzae | ≤2 | -- | -- | ≥17 | -- | -- |
Haemophilus parainfluenzae | ≤2 | -- | -- | ≥17 | -- | -- |
Streptococcus pneumoniae | ≤2 | 4 | ≥8 | ≥17 | 14–16 | ≤13 |
Streptococcus pyogenes | ≤2 | 4 | ≥8 | ≥17 | 14–16 | ≤13 |
Yersinia pestis4 | ≤0.25 | -- | -- | -- | -- | -- |
Bacillus anthracis4 | ≤0.25 | -- | -- | -- | -- | -- |
S = Susceptible, I = Intermediate, R = Resistant
† The current absence of data on resistant isolates precludes defining any categories other than "Susceptible." Isolates yielding MIC/zone diameter results suggestive of a "nonsusceptible" category should be submitted to a reference laboratory for further testing.
A report of Susceptible indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of Intermediate indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where a high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of Resistant indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.
Quality Control:
Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individuals performing the test.1,2,3,4 Standard levofloxacin powder should provide the range of MIC values noted in Table 8. For the diffusion technique using the 5 mcg disk, the criteria in Table 8 should be achieved.
Table 8: Quality Control Ranges for Susceptibility Testing
Microorganism | Microorganism QC Number | MIC (mcg/ml) | Disk Diffusion (zone diameter in mm) |
Enterococcus faecalis | ATCC 29212 | 0.25 – 2 | -- |
Escherichia coli | ATCC 25922 | 0.008 – 0.06 | 0.5 – 2 |
Escherichia coli | ATCC 35218 | 0.015 – 0.06 | -- |
Haemophilus influenzae | ATCC 49247 | 0.008 – 0.03 | 32 – 40 |
Haemophilus influenzae | ATCC 27853 | 0.5 – 4 | 19 – 26 |
Staphylococcus aureus | ATCC 29213 | 0.06 – 0.5 | -- |
Staphylococcus aureus | ATCC 25923 | -- | 25 – 30 |
Streptococcus pneumoniae | ATCC 49619 | 0.5 – 2 | 20 – 25 |
Clinical studies
Nosocomial Pneumonia
Adult patients with clinically and radiologically documented nosocomial pneumonia were enrolled in a multicenter, randomized, open-label study comparing intravenous levofloxacin (750 mg once daily) followed by oral levofloxacin (750 mg once daily) for a total of 7–15 days to intravenous imipenem/cilastatin (500–1000 mg every 6–8 hours daily) followed by oral ciprofloxacin (750 mg every 12 hours daily) for a total of 7–15 days. Levofloxacin-treated patients received an average of 7 days of intravenous therapy (range: 1–16 days); comparatortreated patients received an average of 8 days of intravenous therapy (range: 1–19 days).
Overall, in the clinically and microbiologically evaluable population, adjunctive therapy was empirically initiated at study entry in 56 of 93 (60.2%) patients in the levofloxacin arm and 53 of 94 (56.4%) patients in the comparator arm. The average duration of adjunctive therapy was 7 days in the levofloxacin arm and 7 days in the comparator. In clinically and microbiologically evaluable patients with documented Pseudomonas aeruginosa infection, 15 of 17 (88.2%) received ceftazidime (N = 11) or piperacillin/tazobactam (N = 4) in the levofloxacin arm and 16 of 17 (94.1%) received an aminoglycoside in the comparator arm. Overall, in clinically and microbiologically evaluable patients, vancomycin was added to the treatment regimen of 37 of 93 (39.8%) patients in the levofloxacin arm and 28 of 94 (29.8%) patients in the comparator arm for suspected methicillin-resistant S. aureus infection.
Clinical success rates in clinically and microbiologically evaluable patients at the posttherapy visit (primary study endpoint assessed on day 3–15 after completing therapy) were 58.1% for levofloxacin and 60.6% for comparator. The 95% CI for the difference of response rates (levofloxacin minus comparator) was [-17.2, 12.0]. The microbiological eradication rates at the posttherapy visit were 66.7% for levofloxacin and 60.6% for comparator. The 95% CI for the difference of eradication rates (levofloxacin minus comparator) was [-8.3, 20.3]. Clinical success and microbiological eradication rates by pathogen are detailed in Table 9.
Table 9: Clinical Success Rates and Bacteriological Eradication Rates (Nosocomial Pneumonia)
Pathogen | N | Levofloxacin No. (%) of Patients Microbiologic/ Clinical Outcomes | N | Imipenem/Cilastatin No. (%) of Patients Microbiologic/ Clinical Outcomes |
MSSA* | 21 | 14 (66.7)/13 (61.9) | 19 | 13 (68.4)/15 (78.9) |
P. aeruginosa† | 17 | 10 (58.8)/11 (64.7) | 17 | 5 (29.4)/7 (41.2) |
S. marcescens | 11 | 9 (81.8)/7 (63.6) | 7 | 2 (28.6)/3 (42.9) |
E. coli | 12 | 10 (83.3)/7 (58.3) | 11 | 7 (63.6)/8 (72.7) |
K. pneumoniae‡ | 11 | 9 (81.8)/5 (45.5) | 7 | 6 (85.7)/3 (42.9) |
H. influenzae | 16 | 13 (81.3)/10 (62.5) | 15 | 14 (93.3)/11 (73.3) |
S. pneumoniae | 4 | 3 (75.0)/3 (75.0) | 7 | 5 (71.4)/4 (57.1) |
* Methicillin-susceptible S. aureus
† See above text for use of combination therapy
‡ The observed differences in rates for the clinical and microbiological outcomes may reflect other factors that were not accounted for in the study
Community-Acquired Pneumonia: 7–14 day Treatment Regimen
Adult inpatients and outpatients with a diagnosis of community-acquired bacterial pneumonia were evaluated in 2 pivotal clinical studies. In the first study, 590 patients were enrolled in a prospective, multi-center, unblinded randomized trial comparing levofloxacin 500 mg once daily orally or intravenously for 7 to 14 days to ceftriaxone 1 to 2 grams intravenously once or in equally divided doses twice daily followed by cefuroxime axetil 500 mg orally twice daily for a total of 7 to 14 days. Patients assigned to treatment with the control regimen were allowed to receive erythromycin (or doxycycline if intolerant of erythromycin) if an infection due to atypical pathogens was suspected or proven. Clinical and microbiologic evaluations were performed during treatment, 5 to 7 days posttherapy, and 3 to 4 weeks posttherapy. Clinical success (cure plus improvement) with levofloxacin at 5 to 7 days posttherapy, the primary efficacy variable in this study, was superior (95%) to the control group (83%). The 95% CI for the difference of response rates (levofloxacin minus comparator) was [-6, 19]. In the second study, 264 patients were enrolled in a prospective, multi-center, non-comparative trial of 500 mg levofloxacin administered orally or intravenously once daily for 7 to 14 days. Clinical success for clinically evaluable patients was 93%. For both studies, the clinical success rate in patients with atypical pneumonia due to Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila were 96%, 96%, and 70%, respectively. Microbiologic eradication rates across both studies are presented in Table 10.
Table 10: Bacteriological Eradication Rates Across 2 Community Acquired Pneumonia Clinical Studies
Pathogen | No. Pathogens | Bacteriological Eradication Rate (%) |
H. influenzae | 55 | 98 |
S. pneumoniae | 83 | 95 |
S. aureus | 17 | 88 |
M. catarrhalis | 18 | 94 |
H. parainfluenzae | 19 | 95 |
K. pneumoniae | 10 | 100.0 |
Community-Acquired Pneumonia Due to Multi-Drug Resistant Streptococcus pneumoniae
Levofloxacin was effective for the treatment of community-acquired pneumonia caused by multi-drug resistant Streptococcus pneumoniae (MDRSP). MDRSP isolates are isolates resistant to two or more of the following antibacterials: penicillin (MIC ≥2 mcg/ml), 2nd generation cephalosporins (e.g., cefuroxime, macrolides, tetracyclines and trimethoprim/sulfamethoxazole). Of 40 microbiologically evaluable patients with MDRSP isolates, 38 patients (95.0%) achieved clinical and bacteriologic success at post-therapy. The clinical and bacterial success rates are shown in Table 11.
Table 11: Clinical and Bacterial Success Rates for Levofloxacin-Treated MDRSP in Community Acquired Pneumonia Patients (Population Valid for Efficacy)
Screening Susceptibility | Clinical Success | Bacteriological Success* | ||
n/N† | % | n/N‡ | 5 | |
Penicillin-resistant | 16/17 | 94.1 | 16/17 | 94.1 |
2nd generation Cephalosporin resistant | 31/32 | 96.9 | 31/32 | 96.9 |
Macrolide-resistant | 28/29 | 96.6 | 28/29 | 96.6 |
Trimethoprim/ Sulfamethoxazole resistant | 17/19 | 89.5 | 17/19 | 89.5 |
Tetracycline-resistant | 12/12 | 100 | 12/12 | 100 |
* One patient had a respiratory isolate that was resistant to tetracycline, cefuroxime, macrolides and TMP/SMX and intermediate to penicillin and a blood isolate that was intermediate to penicillin and cefuroxime and resistant to the other classes. The patient is included in the database based on respiratory isolate.
† n = the number of microbiologically evaluable patients who were clinical successes; N = number of microbiologically evaluable patients in the designated resistance group.
‡ n = the number of MDRSP isolates eradicated or presumed eradicated in microbiologically evaluable patients; N = number of MDRSP isolates in a designated resistance group.
Not all isolates were resistant to all antimicrobial classes tested. Success and eradication rates are summarized in Table 12.
Table 12: Clinical Success and Bacteriologic Eradication Rates for Resistant Streptococcus pneumoniae (Community Acquired Pneumonia)
Type of Resistance | Clinical Success | Bacteriologic Eradication |
Resistant to 2 antibacterials | 17/18 (94.4%) | 17/18 (94.4%) |
Resistant to 3 antibacterials | 14/15 (93.3%) | 14/15 (93.3%) |
Resistant to 4 antibacterials | 7/7 (100%) | 7/7 (100%) |
Resistant to 5 antibacterials | 0 | 0 |
Bacteremia with MDRSP | 8/9 (89%) | 8/9 (89%) |
Community-Acquired Pneumonia: 5-day Treatment Regimen
To evaluate the safety and efficacy of the higher dose and shorter course of levofloxacin, 528 outpatient and hospitalized adults with clinically and radiologically determined mild to severe community-acquired pneumonia were evaluated in a double-blind, randomized, prospective, multicenter study comparing levofloxacin 750 mg, IV or orally, every day for five days or levofloxacin 500 mg IV or orally, every day for 10 days.
Clinical success rates (cure plus improvement) in the clinically evaluable population were 90.9% in the levofloxacin 750 mg group and 91.1% in the levofloxacin 500 mg group. The 95% CI for the difference of response rates (levofloxacin 750 minus levofloxacin 500) was [-5.9, 5.4]. In the clinically evaluable population (31–38 days after enrollment) pneumonia was observed in 7 out of 151 patients in the levofloxacin 750 mg group and 2 out of 147 patients in the levofloxacin 500 mg group. Given the small numbers observed, the significance of this finding cannot be determined statistically. The microbiological efficacy of the 5-day regimen was documented for infections listed in Table 13.
Table 13: Bacteriological Eradication Rates (Community-Acquired Pneumonia)
S. pneumoniae | 19/20 (95%) |
Haemophilus influenzae | 12/12 (100%) |
Haemophilus parainfluenzae | 10/10 (100%) |
Mycoplasma pneumoniae | 26/27 (96%) |
Chlamydophila pneumoniae | 13/15 (87%) |
Acute Bacterial Sinusitis: 5-day and 10–14 day Treatment Regimens
Levofloxacin is approved for the treatment of acute bacterial sinusitis (ABS) using either 750 mg by mouth × 5 days or 500 mg by mouth once daily × 10–14 days. To evaluate the safety and efficacy of a high dose short course of levofloxacin, 780 outpatient adults with clinically and radiologically determined acute bacterial sinusitis were evaluated in a double-blind, randomized, prospective, multicenter study comparing levofloxacin 750 mg by mouth once daily for five days to levofloxacin 500 mg by mouth once daily for 10 days.
Clinical success rates (defined as complete or partial resolution of the pre-treatment signs and symptoms of ABS to such an extent that no further antibiotic treatment was deemed necessary) in the microbiologically evaluable population were 91.4% (139/152) in the levofloxacin 750 mg group and 88.6% (132/149) in the levofloxacin 500 mg group at the test-of-cure (TOC) visit (95% CI [-4.2, 10.0] for levofloxacin 750 mg minus levofloxacin 500 mg).
Rates of clinical success by pathogen in the microbiologically evaluable population who had specimens obtained by antral tap at study entry showed comparable results for the five- and tenday regimens at the test-of-cure visit 22 days post treatment (see Table 14).
Table 14: Clinical Success Rate by Pathogen at the TOC in Microbiologically Evaluable Subjects Who Underwent Antral Puncture (Acute Bacterial Sinusitis)
Pathogen | Levofloxacin 750 mg × 5 days | Levofloxacin 500 mg × 10 days |
Streptococcus pneumoniae* | 25/27 (92.6%) | 26/27 (96.3%) |
Haemophilus influenzae* | 19/21 (90.5%) | 25/27 (92.6%) |
Moraxella catarrhalis* | 10/11 (90.9%) | 13/13 (100%) |
* Note: Forty percent of the subjects in this trial had specimens obtained by sinus endoscopy. The efficacy data for subjects whose specimen was obtained endoscopically were comparable to those presented in the above table.
Complicated Skin and Skin Structure Infections
Three hundred ninety-nine patients were enrolled in an open-label, randomized, comparative study for complicated skin and skin structure infections. The patients were randomized to receive either levofloxacin 750 mg once daily (IV followed by oral), or an approved comparator for a median of 10 ± 4.7 days. As is expected in complicated skin and skin structure infections, surgical procedures were performed in the levofloxacin and comparator groups. Surgery (incision and drainage or debridement) was performed on 45% of the levofloxacin-treated patients and 44% of the comparator-treated patients, either shortly before or during antibiotic treatment and formed an integral part of therapy for this indication.
Among those who could be evaluated clinically 2–5 days after completion of study drug, overall success rates (improved or cured) were 116/138 (84.1%) for patients treated with levofloxacin and 106/132 (80.3%) for patients treated with the comparator.
Success rates varied with the type of diagnosis ranging from 68% in patients with infected ulcers to 90% in patients with infected wounds and abscesses. These rates were equivalent to those seen with comparator drugs.
Chronic Bacterial Prostatitis
Adult patients with a clinical diagnosis of prostatitis and microbiological culture results from urine sample collected after prostatic massage (VB3) or expressed prostatic secretion (EPS) specimens obtained via the Meares-Stamey procedure were enrolled in a multicenter, randomized, double-blind study comparing oral levofloxacin 500 mg, once daily for a total of 28 days to oral ciprofloxacin 500 mg, twice daily for a total of 28 days. The primary efficacy endpoint was microbiologic efficacy in microbiologically evaluable patients. A total of 136 and 125 microbiologically evaluable patients were enrolled in the levofloxacin and ciprofloxacin groups, respectively. The microbiologic eradication rate by patient infection at 5–18 days after completion of therapy was 75.0% in the levofloxacin group and 76.8% in the ciprofloxacin group (95% CI [-12.58, 8.98] for levofloxacin minus ciprofloxacin). The overall eradication rates for pathogens of interest are presented in Table 15.
Table 15: Bacteriological Eradication Rates (Chronic Bacterial Prostatitis)
| Levofloxacin (N = 136) | Ciprofloxacin (N = 125) | |||
Pathogen | N | Eradication | N | Eradication | |
E. coli | 15 | 14 (93.3%) | 11 | 9 (81.8%) | |
E. faecalis | 54 | 39 (72.2%) | 44 | 33 (75.0%) | |
S. epidermidis* | 11 | 9 (81.8%) | 14 | 11 (78.6%) |
* Eradication rates shown are for patients who had a sole pathogen only; mixed cultures were excluded.
Eradication rates for S. epidermidis when found with other co-pathogens are consistent with rates seen in pure isolates.
Clinical success (cure + improvement with no need for further antibiotic therapy) rates in microbiologically evaluable population 5–18 days after completion of therapy were 75.0% for levofloxacin-treated patients and 72.8% for ciprofloxacin-treated patients (95% CI [-8.87, 13.27] for levofloxacin minus ciprofloxacin). Clinical long-term success (24–45 days after completion of therapy) rates were 66.7% for the levofloxacin-treated patients and 76.9% for the ciprofloxacin-treated patients (95% CI [-23.40, 2.89] for levofloxacin minus ciprofloxacin).
Complicated Urinary Tract Infections and Acute Pyelonephritis: 5-day Treatment Regimen
To evaluate the safety and efficacy of the higher dose and shorter course of levofloxacin, 1109 patients with cUTI and AP were enrolled in a randomized, double-blind, multicenter clinical trial conducted in the US from November 2004 to April 2006 comparing levofloxacin 750 mg IV or orally once daily for 5 days (546 patients) with ciprofloxacin 400 mg IV or 500 mg orally twice daily for 10 days (563 patients). Patients with AP complicated by underlying renal diseases or conditions such as complete obstruction, surgery, transplantation, concurrent infection or congenital malformation were excluded. Efficacy was measured by bacteriologic eradication of the baseline organism(s) at the post-therapy visit in patients with a pathogen identified at baseline. The post-therapy (test-of-cure) visit occurred 10 to 14 days after the last active dose of levofloxacin and 5 to 9 days after the last dose of active ciprofloxacin.
The bacteriologic cure rates overall for levofloxacin and control at the test-of-cure (TOC) visit for the group of all patients with a documented pathogen at baseline (modified intent to treat or mITT) and the group of patients in the mITT population who closely followed the protocol (Microbiologically Evaluable) are summarized in Table 16.
Table 16: Bacteriological Eradication at Test-of-Cure
| Levofloxacin 750 mg orally or IV once daily for 5 days | Ciprofloxacin 400 mg IV/500 mg orally twice daily for 10 days | Overall Difference [95% CI] | ||
| n/N | % | n/N | % | Levofloxacin-Ciprofloxacin |
mITT Population* | |||||
Overall (cUTI or AP) | 252/333 | 75.7 | 239/318 | 75.2 | 0.5 (-6.1, 7.1) |
cUTI | 168/230 | 73.0 | 157/213 | 73.7 |
|
AP | 84/103 | 81.6 | 82/105 | 78.1 |
|
Microbiologically Evaluable Population† | |||||
Overall (cUTI or AP) | 228/265 | 86.0 | 215/241 | 89.2 | -3.2 [-8.9, 2.5] |
cUTI | 154/185 | 83.2 | 144/165 | 87.3 |
|
AP | 74/80 | 92.5 | 71/76 | 93.4 |
|
* The mITT population included patients who received study medication and who had a positive (≥105 CFU/ml) urine culture with no more than 2 uropathogens at baseline. Patients with missing response were counted as failures in this analysis.
† The Microbiologically Evaluable population included patients with a confirmed diagnosis of cUTI or AP, a causative organism(s) at baseline present at ≥105 CFU/ml, a valid test-of-cure urine culture, no pathogen isolated from blood resistant to study drug, no premature discontinuation or loss to follow-up, and compliance with treatment (among other criteria).
Microbiologic eradication rates in the Microbiologically Evaluable population at TOC for individual pathogens recovered from patients randomized to levofloxacin treatment are presented in Table 17.
Table 17: Bacteriological Eradication Rates for Individual Pathogens Recovered From Patients Randomized to levofloxacin 750 mg QD for 5 Days Treatment
Pathogen | Bacteriological Eradication Rate (n/N) | % |
Escherichia coli* | 155/172 | 90 |
Klebsiella pneumoniae | 20/23 | 87 |
Proteus mirabilis | 12/12 | 100 |
* The predominant organism isolated from patients with AP was E. coli: 91% (63/69) eradication in AP and 89% (92/103) in patients with cUTI.
Complicated Urinary Tract Infections and Acute Pyelonephritis: 10-day Treatment Regimen
To evaluate the safety and efficacy of the 250 mg dose, 10 day regimen of levofloxacin, 567 patients with uncomplicated UTI, mild-to-moderate cUTI, and mild-to-moderate AP were enrolled in a randomized, double-blind, multicenter clinical trial conducted in the US from June 1993 to January 1995 comparing levofloxacin 250 mg orally once daily for 10 days (285 patients) with ciprofloxacin 500 mg orally twice daily for 10 days (282 patients). Patients with a resistant pathogen, recurrent UTI, women over age 55 years, and with an indwelling catheter were initially excluded, prior to protocol amendment which took place after 30% of enrollment. Microbiological efficacy was measured by bacteriologic eradication of the baseline organism(s) at 1–12 days post-therapy in patients with a pathogen identified at baseline.
The bacteriologic cure rates overall for levofloxacin and control at the test-of-cure (TOC) visit for the group of all patients with a documented pathogen at baseline (modified intent to treat or mITT) and the group of patients in the mITT population who closely followed the protocol (Microbiologically Evaluable) are summarized in Table 18.
Table 18: Bacteriological Eradication Overall (cUTI or AP) at Test-Of-Cure*
| Levofloxacin 250 mg once daily for 10 days | Ciprofloxacin 500 mg twice daily for 10 days | ||
| n/N | % | n/N | % |
mITT Population† | 174/209 | 83.3 | 184/219 | 84.0 |
Microbiologically Evaluable Population‡ | 164/177 | 92.7 | 159/171 | 93.0 |
* 1–9 days posttherapy for 30% of subjects enrolled prior to a protocol amendment; 5–12 days posttherapy for 70% of subjects.
† The mITT population included patients who had a pathogen isolated at baseline. Patients with missing response were counted as failures in this analysis.
‡ The Microbiologically Evaluable population included mITT patients who met protocol-specified evaluability criteria.
Inhalational Anthrax (Post-Exposure)
The effectiveness of levofloxacin for this indication is based on plasma concentrations achieved in humans, a surrogate endpoint reasonably likely to predict clinical benefit. Levofloxacin has not been tested in humans for the post-exposure prevention of inhalation anthrax. The mean plasma concentrations of levofloxacin associated with a statistically significant improvement in survival over placebo in the rhesus monkey model of inhalational anthrax are reached or exceeded in adult and pediatric patients receiving the recommended oral and intravenous dosage regimens.
Levofloxacin pharmacokinetics have been evaluated in adult and pediatric patients. The mean (± SD) steady state peak plasma concentration in human adults receiving 500 mg orally or intravenously once daily is 5.7 ± 1.4 and 6.4 ± 0.8 mcg/ml, respectively; and the corresponding total plasma exposure (AUC0-24) is 47.5 ± 6.7 and 54.6 ± 11.1 mcg.h/ml, respectively. The predicted steady-state pharmacokinetic parameters in pediatric patients ranging in age from 6 months to 17 years receiving 8 mg/kg orally every 12 hours (not to exceed 250 mg per dose) were calculated to be comparable to those observed in adults receiving 500 mg orally once daily.
In adults, the safety of levofloxacin for treatment durations of up to 28 days is well characterized. However, information pertaining to extended use at 500 mg daily up to 60 days is limited. Prolonged levofloxacin therapy in adults should only be used when the benefit outweighs the risk.
In pediatric patients, the safety of levofloxacin for treatment durations of more than 14 days has not been studied. An increased incidence of musculoskeletal adverse events (arthralgia, arthritis, tendinopathy, gait abnormality) compared to controls has been observed in clinical studies with treatment duration of up to 14 days. Long-term safety data, including effects on cartilage, following the administration of levofloxacin to pediatric patients is limited.
A placebo-controlled animal study in rhesus monkeys exposed to an inhaled mean dose of 49 LD50 (~2.7 × 106) spores (range 17 – 118 LD50) of B. anthracis (Ames strain) was conducted. The minimal inhibitory concentration (MIC) of levofloxacin for the anthrax strain used in this study was 0.125 mcg/ml. In the animals studied, mean plasma concentrations of levofloxacin achieved at expected Tmax (1 hour post-dose) following oral dosing to steady state ranged from 2.79 to 4.87 mcg/ml. Steady state trough concentrations at 24 hours post-dose ranged from 0.107 to 0.164 mcg/ml. Mean (SD) steady state AUC0-24 was 33.4 ± 3.2 mcg.h/ml (range 30.4 to 36.0 mcg.h/ml). Mortality due to anthrax for animals that received a 30 day regimen of oral levofloxacin beginning 24 hrs post exposure was significantly lower (1/10), compared to the placebo group (9/10) [P = 0.0011, 2-sided Fisher’s Exact Test]. The one levofloxacin treated animal that died of anthrax did so following the 30-day drug administration period.
Plague
Efficacy studies of levofloxacin could not be conducted in humans with pneumonic plague for ethical and feasibility reasons. Therefore, approval of this indication was based on an efficacy study conducted in animals.
The mean plasma concentrations of levofloxacin associated with a statistically significant improvement in survival over placebo in an African green monkey model of pneumonic plague are reached or exceeded in adult and pediatric patients receiving the recommended oral and intravenous dosage regimens.
Levofloxacin pharmacokinetics have been evaluated in adult and pediatric patients. The mean (± SD) steady state peak plasma concentration in human adults receiving 500 mg orally or intravenously once daily is 5.7 ± 1.4 and 6.4 ± 0.8 mcg/ml, respectively; and the corresponding total plasma exposure (AUC0-24) is 47.5 ± 6.7 and 54.6 ± 11.1 mcg.h/ml, respectively. The predicted steady-state pharmacokinetic parameters in pediatric patients ranging in age from 6 months to 17 years receiving 8 mg/kg orally every 12 hours (not to exceed 250 mg per dose) were calculated to be comparable to those observed in adults receiving 500 mg orally once daily.
A placebo-controlled animal study in African green monkeys exposed to an inhaled mean dose of 65 LD50 (range 3 to 145 LD50) of Yersinia pestis (CO92 strain) was conducted. The minimal inhibitory concentration (MIC) of levofloxacin for the Y. pestis strain used in this study was 0.03 mcg/ml. Mean plasma concentrations of levofloxacin achieved at the end of a single 30-min infusion ranged from 2.84 to 3.50 mcg/ml in African green monkeys. Trough concentrations at 24 hours post-dose ranged from <0.03 to 0.06 mcg/ml. Mean (SD) AUC0-24 was 11.9 (3.1) mcg.h/ml (range 9.50 to 16.86 mcg.h/ml). Animals were randomized to receive either a 10-day regimen of i.v. levofloxacin or placebo beginning within 6 hrs of the onset of telemetered fever (≥ 39o C for more than 1 hour). Mortality in the levofloxacin group was significantly lower (1/17) compared to the placebo group (7/7) [p<0.001, Fisher’s Exact Test; exact 95% confidence interval (-99.9%, -55.5%) for the difference in mortality]. One levofloxacin-treated animal was euthanized on Day 9 post-exposure to Y. pestis due to a gastric complication; it had a blood culture positive for Y. pestis on Day 3 and all subsequent daily blood cultures from Day 4 through Day 7 were negative.
The mean ± SD pharmacokinetic parameters of levofloxacin determined under single and steadystate conditions following oral tablet, oral solution, or intravenous (IV) doses of levofloxacin are summarized in Table 19.
Table 19: Mean ± SD Levofloxacin PK Parameters
Regimen | Cmax (mcg/ml) | Tmax (h) | AUC (mcg·h/ml) | CL/F1 (ml/min) | Vd/F2 (L) | t1/2 (h) | CLR (ml/min) |
Single dose | |||||||
250 mg oral tablet3 | 2.8 ± 0.4 | 1.6 ± 1.0 | 27.2 ± 3.9 | 156 ± 20 | ND | 7.3 ± 0.9 | 7.5 ± 1.6 |
500 mg oral tablet3* | 5.1 ± 0.8 | 1.3 ± 0.6 | 47.9 ± 6.8 | 178 ± 28 | ND | 6.3 ± 0.6 | 103 ± 30 |
500 mg oral solution12 | 5.8 ± 1.8 | 0.8 ± 0.7 | 47.8 ± 10.8 | 183 ± 40 | 112 ± 37.2 | 7.0 ± 1.4 | ND |
500 mg IV3 | 6.2 ± 1.0 | 1.0 ± 0.1 | 48.3 ± 5.4 | 175 ± 20 | 90 ± 11 | 6.4 ± 0.7 | 112 ± 25 |
750 mg oral tablet5* | 9.3 ± 1.6 | 1.6 ± 0.8 | 101 ± 20 | 129 ± 24 | 83 ± 17 | 7.5 ± 0.9 | ND |
750 mg IV5 | 11.5 ± 4.04 | ND | 110 ± 40 | 126 ± 39 | 75 ± 13 | 7.5 ± 1.6 | ND |
Multiple dose | |||||||
500 mg every 24h oral tablet3 | 5.7 ± 1.4 | 1.1 ± 0.4 | 47.5 ± 6.7 | 175 ± 25 | 102 ± 22 | 7.6 ± 1.6 | 116 ± 31 |
500 mg every 24h IV3 | 6.4 ± 0.8 | ND | 54.6 ± 11.1 | 158 ± 29 | 91 ± 12 | 7.0 ± 0.8 | 99 ± 28 |
500 mg or 250 mg every 24h IV, patients with bacterial infection6 | 8.7± 4.07 | ND | 72.5 ± 51.27 | 154 ± 72 | 111 ± 58 | ND | ND |
750 mg every 24h oral tablet5 | 8.6 ± 1.9 | 1.4 ± 0.5 | 90.7 ± 17.6 | 143 ± 29 | 100 ± 16 | 8.8 ± 1.5 | 116 ± 28 |
750 mg every 24h IV5 | 12.1 ± 4.14 | ND | 108 ± 34 | 126 ± 37 | 80 ± 27 | 7.9 ± 1.9 | ND |
500 mg oral tablet single dose, effects of gender and age: | |||||||
Male8 | 5.5 ± 1.1 | 1.2 ± 0.4 | 54.4 ± 18.9 | 166 ± 44 | 89 ± 13 | 7.5 ± 2.1 | 126 ± 38 |
Female9 | 7.0 ± 1.6 | 1.7 ± 0.5 | 67.7 ± 24.2 | 136 ± 44 | 62 ± 16 | 6.1 ± 0.8 | 106 ± 40 |
Young10 | 5.5 ± 1.0 | 1.5 ± 0.6 | 47.5 ± 9.8 | 182 ± 35 | 83 ± 18 | 6.0 ± 0.9 | 140 ± 33 |
Elderly11 | 7.0 ± 1.6 | 1.4 ± 0.5 | 74.7 ± 23.3 | 121 ± 33 | 67 ± 19 | 7.6 ± 2.0 | 91 ± 29 |
500 mg oral single dose tablet, patients with renal insufficiency: | |||||||
CLCR 50–80 ml/min | 7.5 ± 1.8 | 1.5 ± 0.5 | 95.6 ± 11.8 | 88 ± 10 | ND | 9.1 ± 0.9 | 57 ± 8 |
CLCR 20–49 ml/min | 7.1 ± 3.1 | 2.1 ± 1.3 | 182.1 ± 62.6 | 51 ± 19 | ND | 27 ± 10 | 26 ± 13 |
CLCR <20 ml/min | 8.2 ± 2.6 | 1.1 ± 1.0 | 263.5 ± 72.5 | 33 ± 8 | ND | 35 ± 5 | 13 ± 3 |
Hemodialysis | 5.7 ± 1.0 | 2.8 ± 2.2 | ND | ND | ND | 76 ± 42 | ND |
CAPD | 6.9 ± 2.3 | 1.4 ± 1.1 | ND | ND | ND | 51 ± 24 | ND |
1 clearance/bioavailability
2 volume of distribution/bioavailability
3 healthy males 18–53 years of age
4 60 min infusion for 250 mg and 500 mg doses, 90 min infusion for 750 mg dose
5 healthy male and female subjects 18–54 years of age
6 500 mg every 48h for patients with moderate renal impairment (CLCR 20–50 ml/min) and infections of the respiratory tract or skin
7 dose-normalized values (to 500 mg dose), estimated by population pharmacokinetic modeling 8 healthy males 22–75 years of age
9 healthy females 18–80 years of age
10 young healthy male and female subjects 18–36 years of age
11 healthy elderly male and female subjects 66–80 years of age
12 healthy males and females 19–55 years of age.
* Absolute bioavailability; F=0.99 ± 0.08 from a 500 mg tablet and F=0.99 ± 0.06 from a 750 mg tablet; ND=not determined.
Absorption
Levofloxacin is rapidly and essentially completely absorbed after oral administration. Peak plasma concentrations are usually attained one to two hours after oral dosing. The absolute bioavailability of levofloxacin from a 500 mg tablet and a 750 mg tablet of levofloxacin are both approximately 99%, demonstrating complete oral absorption of levofloxacin. Following a single intravenous dose of levofloxacin to healthy volunteers, the mean ± SD peak plasma concentration attained was 6.2 ± 1.0 mcg/ml after a 500 mg dose infused over 60 minutes and 11.5 ± 4.0 mcg/ml after a 750 mg dose infused over 90 minutes. Levofloxacin Oral Solution and Tablet formulations are bioequivalent.
Levofloxacin pharmacokinetics are linear and predictable after single and multiple oral or IV dosing regimens. Steady-state conditions are reached within 48 hours following a 500 mg or 750 mg once-daily dosage regimen. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily oral dosage regimens were approximately 5.7 ± 1.4 and 0.5 ± 0.2 mcg/ml after the 500 mg doses, and 8.6 ± 1.9 and 1.1 ± 0.4 mcg/mL after the 750 mg doses, respectively. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily IV regimens were approximately 6.4 ± 0.8 and 0.6 ± 0.2 mcg/ml after the 500 mg doses, and 12.1 ± 4.1 and 1.3 ± 0.71 mcg/ml after the 750 mg doses, respectively. Oral administration of a 500 mg dose of levofloxacin with food prolongs the time to peak concentration by approximately 1 hour and decreases the peak concentration by approximately 14% following tablet and approximately 25% following oral solution administration. Therefore, levofloxacin Tablets can be administered without regard to food. It is recommended that levofloxacin Oral Solution be taken 1 hour before or 2 hours after eating.
The plasma concentration profile of levofloxacin after IV administration is similar and comparable in extent of exposure (AUC) to that observed for levofloxacin Tablets when equal doses (mg/mg) are administered. Therefore, the oral and IV routes of administration can be considered interchangeable (see Figure 2 and Figure 3).
Figure 2: Mean Levofloxacin Plasma Concentration vs. Time Profile: 750 mg
Figure 3: Mean Levofloxacin Plasma Concentration vs. Time Profile: 500 mg
Distribution
The mean volume of distribution of levofloxacin generally ranges from 74 to 112 L after single and multiple 500 mg or 750 mg doses, indicating widespread distribution into body tissues. Levofloxacin reaches its peak levels in skin tissues and in blister fluid of healthy subjects at approximately 3 hours after dosing. The skin tissue biopsy to plasma AUC ratio is approximately 2 and the blister fluid to plasma AUC ratio is approximately 1 following multiple once-daily oral administration of 750 mg and 500 mg doses of levofloxacin, respectively, to healthy subjects. Levofloxacin also penetrates well into lung tissues. Lung tissue concentrations were generally 2- to 5-fold higher than plasma concentrations and ranged from approximately 2.4 to 11.3 mcg/g over a 24-hour period after a single 500 mg oral dose.
In vitro, over a clinically relevant range (1 to 10 mcg/ml) of serum/plasma levofloxacin concentrations, levofloxacin is approximately 24 to 38% bound to serum proteins across all species studied, as determined by the equilibrium dialysis method. Levofloxacin is mainly bound to serum albumin in humans. Levofloxacin binding to serum proteins is independent of the drug concentration.
Metabolism
Levofloxacin is stereochemically stable in plasma and urine and does not invert metabolically to its enantiomer, D-ofloxacin. Levofloxacin undergoes limited metabolism in humans and is primarily excreted as unchanged drug in the urine. Following oral administration, approximately 87% of an administered dose was recovered as unchanged drug in urine within 48 hours, whereas less than 4% of the dose was recovered in feces in 72 hours. Less than 5% of an administered dose was recovered in the urine as the desmethyl and N-oxide metabolites, the only metabolites identified in humans. These metabolites have little relevant pharmacological activity.
Excretion
Levofloxacin is excreted largely as unchanged drug in the urine. The mean terminal plasma elimination half-life of levofloxacin ranges from approximately 6 to 8 hours following single or multiple doses of levofloxacin given orally or intravenously. The mean apparent total body clearance and renal clearance range from approximately 144 to 226 ml/min and 96 to 142 ml/min, respectively. Renal clearance in excess of the glomerular filtration rate suggests that tubular secretion of levofloxacin occurs in addition to its glomerular filtration. Concomitant administration of either cimetidine or probenecid results in approximately 24% and 35% reduction in the levofloxacin renal clearance, respectively, indicating that secretion of levofloxacin occurs in the renal proximal tubule. No levofloxacin crystals were found in any of the urine samples freshly collected from subjects receiving levofloxacin.
Geriatric
There are no significant differences in levofloxacin pharmacokinetics between young and elderly subjects when the subjects’ differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of levofloxacin to healthy elderly subjects (66-80 years of age), the mean terminal plasma elimination half-life of levofloxacin was about 7.6 hours, as compared to approximately 6 hours in younger adults. The difference was attributable to the variation in renal function status of the subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by age. Levofloxacin dose adjustment based on age alone is not necessary.
Pediatrics
The pharmacokinetics of levofloxacin following a single 7 mg/kg intravenous dose were investigated in pediatric patients ranging in age from 6 months to 16 years. Pediatric patients cleared levofloxacin faster than adult patients, resulting in lower plasma exposures than adults for a given mg/kg dose. Subsequent pharmacokinetic analyses predicted that a dosage regimen of 8 mg/kg every 12 hours (not to exceed 250 mg per dose) for pediatric patients 6 months to 17 years of age would achieve comparable steady state plasma exposures (AUC0-24 and Cmax) to those observed in adult patients administered 500 mg of levofloxacin once every 24 hours.
Gender
There are no significant differences in levofloxacin pharmacokinetics between male and female subjects when subjects’ differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of levofloxacin to healthy male subjects, the mean terminal plasma elimination half-life of levofloxacin was about 7.5 hours, as compared to approximately 6.1 hours in female subjects. This difference was attributable to the variation in renal function status of the male and female subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by the gender of the subjects. Dose adjustment based on gender alone is not necessary.
Race
The effect of race on levofloxacin pharmacokinetics was examined through a covariate analysis performed on data from 72 subjects: 48 white and 24 non-white. The apparent total body clearance and apparent volume of distribution were not affected by the race of the subjects.
Renal Impairment
Clearance of levofloxacin is substantially reduced and plasma elimination half-life is substantially prolonged in adult patients with impaired renal function (creatinine clearance < 50 ml/min), requiring dosage adjustment in such patients to avoid accumulation. Neither hemodialysis nor continuous ambulatory peritoneal dialysis (CAPD) is effective in removal of levofloxacin from the body, indicating that supplemental doses of levofloxacin are not required following hemodialysis or CAPD.
Hepatic Impairment
Pharmacokinetic studies in hepatically impaired patients have not been conducted. Due to the limited extent of levofloxacin metabolism, the pharmacokinetics of levofloxacin are not expected to be affected by hepatic impairment.
Bacterial Infection
The pharmacokinetics of levofloxacin in patients with serious community-acquired bacterial infections are comparable to those observed in healthy subjects.
Drug-Drug Interactions
The potential for pharmacokinetic drug interactions between levofloxacin and antacids, warfarin, theophylline, cyclosporine, digoxin, probenecid, and cimetidine has been evaluated.
Carcinogenesis, Mutagenesis, Impairment of Fertility
In a lifetime bioassay in rats, levofloxacin exhibited no carcinogenic potential following daily dietary administration for 2 years; the highest dose (100 mg/kg/day) was 1.4 times the highest recommended human dose (750 mg) based upon relative body surface area. Levofloxacin did not shorten the time to tumor development of UV-induced skin tumors in hairless albino (Skh-1) mice at any levofloxacin dose level and was therefore not photo-carcinogenic under conditions of this study. Dermal levofloxacin concentrations in the hairless mice ranged from 25 to 42 mcg/g at the highest levofloxacin dose level (300 mg/kg/day) used in the photo-carcinogenicity study. By comparison, dermal levofloxacin concentrations in human subjects receiving 750 mg of levofloxacin averaged approximately 11.8 mcg/g at Cmax.
Levofloxacin was not mutagenic in the following assays: Ames bacterial mutation assay (S. typhimurium and E. coli), CHO/HGPRT forward mutation assay, mouse micronucleus test, mouse dominant lethal test, rat unscheduled DNA synthesis assay, and the mouse sister chromatid exchange assay. It was positive in the in vitro chromosomal aberration (CHL cell line) and sister chromatid exchange (CHL/IU cell line) assays.
Levofloxacin caused no impairment of fertility or reproductive performance in rats at oral doses as high as 360 mg/kg/day, corresponding to 4.2 times the highest recommended human dose based upon relative body surface area and intravenous doses as high as 100 mg/kg/day, corresponding to 1.2 times the highest recommended human dose based upon relative body surface area.
Animal Toxicology and/or Pharmacology
Levofloxacin and other quinolones have been shown to cause arthropathy in immature animals of most species tested. In immature dogs (4–5 months old), oral doses of 10 mg/kg/day for 7 days and intravenous doses of 4 mg/kg/day for 14 days of levofloxacin resulted in arthropathic lesions. Administration at oral doses of 300 mg/kg/day for 7 days and intravenous doses of 60 mg/kg/day for 4 weeks produced arthropathy in juvenile rats. Three-month old beagle dogs dosed orally with levofloxacin at 40 mg/kg/day exhibited clinically severe arthrotoxicity resulting in the termination of dosing at Day 8 of a 14-day dosing routine. Slight musculoskeletal clinical effects, in the absence of gross pathological or histopathological effects, resulted from the lowest dose level of 2.5 mg/kg/day (approximately 0.2-fold the pediatric dose based upon AUC comparisons). Synovitis and articular cartilage lesions were observed at the 10 and 40 mg/kg dose levels (approximately 0.7-fold and 2.4-fold the pediatric dose, respectively, based on AUC comparisons). Articular cartilage gross pathology and histopathology persisted to the end of the 18-week recovery period for those dogs from the 10 and 40 mg/kg/day dose levels.
When tested in a mouse ear swelling bioassay, levofloxacin exhibited phototoxicity similar in magnitude to ofloxacin, but less phototoxicity than other quinolones.
While crystalluria has been observed in some intravenous rat studies, urinary crystals are not formed in the bladder, being present only after micturition and are not associated with nephrotoxicity.
In mice, the CNS stimulatory effect of quinolones is enhanced by concomitant administration of non-steroidal anti-inflammatory drugs.
In dogs, levofloxacin administered at 6 mg/kg or higher by rapid intravenous injection produced hypotensive effects. These effects were considered to be related to histamine release.
In vitro and in vivo studies in animals indicate that levofloxacin is neither an enzyme inducer nor inhibitor in the human therapeutic plasma concentration range; therefore, no drug metabolizing enzyme-related interactions with other drugs or agents are anticipated.
- Dextrose
- Sodium hydroxide
- Hydrochloric acid
- Water for injection
Because only limited data are available on the compatibility of levofloxacin with other intravenous substances, additives or other medications should not be added to levofloxacin in bags, or infused simultaneously through the same intravenous line.
Do not store above 30°C.
Store in the original package in order to protect from heat and light.
200 ml polypropylene bags with twist-offs. The bag is put into an aluminum over-pouch.
Pack size: 1 Bag (150 ml).
Any unused portion should be discarded.