برجاء الإنتظار ...

Search Results



نشرة الممارس الصحي نشرة معلومات المريض بالعربية نشرة معلومات المريض بالانجليزية صور الدواء بيانات الدواء
  SFDA PIL (Patient Information Leaflet (PIL) are under review by Saudi Food and Drug Authority)

Tyrox® contains the active substance Erlotinib. Tyrox®  is a medicine used to treat cancer by preventing the activity of a protein called epidermal growth factor receptor (EGFR). This protein is known to be involved in the growth and spread of cancer cells. Tyrox® is indicated for adults. This medicine can be prescribed to you if you have non-small cell lung cancer at an advanced stage. It can be prescribed as initial therapy or as therapy if your disease remains largely unchanged after initial chemotherapy, provided your cancer cells have specific EGFR mutations. It can also be prescribed if previous chemotherapy has not helped to stop your disease. This medicine can also be prescribed to you in combination with another treatment called gemcitabine if you have cancer of the pancreas at a metastatic stage.


Do not take Tyrox® if you:

Do not take Tyrox®:

If you are allergic to Erlotinib or any of the ingredients of this medicine (listed in section 6).

 

Warnings and precautions

· if you are taking other medicines that may increase or decrease the amount of erlotinib in your blood or influence its effect (for example antifungals like ketoconazole, protease inhibitors, erythromycin, clarithromycin, phenytoin, carbamazepine, barbiturates, rifampicin, ciprofloxacin, omeprazole, ranitidine, St. John’s Wort or proteasome inhibitors), talk to your doctor. In some cases these medicines may reduce the efficacy or increase the side effects of Tyrox®  and your doctor may need to adjust your treatment. Your doctor might avoid treating you with these medicines while you are receiving Tyrox®. · if you are taking anticoagulants (a medicine which helps to prevent thrombosis or blood clotting e.g. warfarin), Tyrox®  may increase your tendency to bleed. Talk to your doctor, he will need to regularly monitor you with some blood tests.

 

if you are taking statins (medicines to lower your blood cholesterol), Tyrox®  may increase the risk of statin related muscle problems, which on rare occasions can lead to serious muscle breakdown (rhabdomyolysis) resulting in kidney damage, talk to your doctor. · if you use contact lenses and/or have a history of eye problems such as severe dry eyes, inflammation of the front part of the eye (cornea) or ulcers involving the front part of the eye, tell your doctor.

 

Other medicines and Name of Tyrox®

You should tell your doctor:

 · if you have sudden difficulty in breathing associated with cough or fever because your doctor may need to treat you with other medicines and interrupt your Tyrox®  treatment;

· if you have diarrhoea because your doctor may need to treat you with anti-diarrhoeal (for example loperamide);

 · immediately, if you have severe or persistent diarrhoea, nausea, loss of appetite, or vomiting because your doctor may need to interrupt your Tyrox®  treatment and may need to treat you in the hospital;

· if you have severe pain in the abdomen, severe blistering or peeling of skin. Your doctor may need to interrupt or stop your treatment;

· if you develop acute or worsening redness and pain in the eye, increased eye watering, blurred vision and/or sensitivity to light, please tell your doctor or nurse immediately as you may need urgent treatment (see Possible Side Effects below).

· if you are also taking a statin and experience unexplained muscle pain, tenderness, weakness or cramps. Your doctor may need to interrupt or stop your treatment.

 

Tyrox® with food, drink and alcohol

Do not take Tyrox®  with food. See also section 3 ‘How to take Tyrox®

 

Pregnancy and breast-feeding

Avoid pregnancy while being treated with Tyrox®. If you could become pregnant, use adequate contraception during treatment, and for at least 2 weeks after taking the last tablet. If you become pregnant while you are being treated with Tyrox®, immediately inform your doctor who will decide if the treatment should be continued. Do not breast-feed if you are being treated with Tyrox®, and for at least 2 weeks after taking the last tablet.

 

If you are pregnant or breast-feeding, think you may be pregnant or are planning to have a baby, ask your doctor or pharmacist for advice before taking this medicine.

 

Driving and using machines

Tyrox® has not been studied for its possible effects on the ability to drive and use machines but it is very unlikely that your treatment will affect this ability.

 

Name of Tyrox® contains lactose monohydrate

If you have been told by your doctor that you have an intolerance to some sugars, contact your doctor before taking Tyrox®.

 


Always take this medicine exactly as your doctor has told you. Check with your doctor or pharmacist if you are not sure. The tablet should be taken at least one hour before or two hours after the ingestion of food. The usual dose is one tablet of Tyrox®  150 mg each day if you have non-small cell lung cancer. The usual dose is one tablet of Tyrox®  100 mg each day if you have metastatic pancreatic cancer. Tyrox®  is given in combination with gemcitabine treatment. Your doctor may adjust your dose in 50 mg steps. For the different dose regimens Tyrox®  is available in strengths of 25 mg, 100 mg or 150 mg.

 

Use in children and adolescents

Tyrox®  has not been studied in patients under the age of 18 years. The treatment with this medicine is not recommended for children and adolescents.

 

If you take more Tyrox® than you should

Contact your doctor or pharmacist immediately. You may have increased side effects and your doctor may interrupt your treatment.

 

If you forget to take Name of Tyrox®

If you miss one or more doses of Tyrox®, contact your doctor or pharmacist as soon as possible. Do not take a double dose to make up for a forgotten dose.

 

If you stop taking Name of Tyrox®

It is important to keep taking Tyrox®  every day, as long as your doctor prescribes it for you. If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

 

 


Liver or kidney disease

It is not known whether Tyrox®  has a different effect if your liver or kidneys are not functioning normally. The treatment with this medicine is not recommended if you have a severe liver disease or severe kidney disease.

 

Glucuronidation disorder like Gilbert’s syndrome

Your doctor must treat you with caution if you have a glucuronidation disorder like Gilbert’s syndrome.

 

Smoking

You are advised to stop smoking if you are treated with Tyrox® as smoking could decrease the amount of your medicine in the blood.

 

Like all medicines, this medicine can cause side effects, although not everybody gets them. Contact your doctor as soon as possible if you suffer from any of the below side effects. In some cases your doctor may need to reduce your dose of Tyrox®  or interrupt treatment:

· Diarrhoea and vomiting (very common: may affect more than 1 out of 10 people). Persistent and severe diarrhoea may lead to low blood potassium and impairment of your kidney function, particularly if you receive other chemotherapy treatments at the same time. If you experience more severe or persistent diarrhoea contact your doctor immediately as your doctor may need to treat you in the hospital.

· Eye irritation due to conjunctivitis/keratoconjunctivitis (very common: may affect more than 1 out of 10 people) and keratitis (common: may affect up to 1 in 10 people).

Form of lung irritation called interstitial lung disease (uncommon in European patients; common in Japanese patients: may affect up to 1 in 100 people in Europe and up to 1 in 10 in Japan). This disease can also be linked to the natural progression of your medical condition and can have a fatal outcome in some cases. If you develop symptoms such as sudden difficulty in breathing associated with cough or fever contact your doctor immediately as you could suffer from this disease. Your doctor may decide to permanently stop your treatment with Tyrox®.

· Gastrointestinal perforations have been observed (uncommon: may affect up to 1 in 100 people). Tell your doctor if you have severe pain in your abdomen. Also, tell your doctor if you had peptic ulcers or diverticular disease in the past, as this may increase this risk.

· In rare cases liver failure was observed (rare: may affect up to 1 in 1,000 people). If your blood tests indicate severe changes in your liver function, your doctor may need to interrupt your treatment. Very common side effects (may affect more than 1 in 10 people):

· Rash which may occur or worsen in sun exposed areas. If you are exposed to sun, protective clothing, and/or use of sunscreen (e.g. mineral-containing) may be advisable

· Infection

· Loss of appetite, decreased weight

· Depression

· Headache, altered skin sensation or numbness in the extremities

· Difficulty in breathing, cough

· Nausea

· Mouth irritation

· Stomach pain, indigestion and flatulence

· Abnormal blood tests for the liver function

· Itching, dry skin and loss of hair

· Tiredness, fever, rigors Common side effects (may affect up to 1 in 10 people):

· Bleeding from the nose

· Bleeding from the stomach or the intestines

· Inflammatory reactions around the fingernail

· Infection of hair follicles

· Acne

· Cracked skin (skin fissures)

· Reduced kidney function (when given outside the approved indications in combination with chemotherapy)

Uncommon side effects (may affect up to 1 in 100 people):

· Eyelash changes

· Excess body and facial hair of a male distribution pattern

· Eyebrow changes

· Brittle and loose nails Rare side effects (may affect up to 1 in 1,000 people):

· Flushed or painful palms or soles (Palmar plantar erythrodysaesthesia syndrome)

 

Very rare side effects (may affect up to 1 in 10,000 people):

· Cases of perforation or ulceration of the cornea

· Severe blistering or peeling of skin (suggestive of Stevens-Johnson syndrome)

· Inflammation of the coloured part of the eye Reporting of side effects


Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the blister and the carton after EXP.

The expiry date refers to the last day of that month.

Store below 30 C

Do not throw away any medicines via wastewater or household waste.

Ask your pharmacist how to throw away medicines you no longer use.

These measures will help to protect the environment. 6

 

 


The active substance of Tyrox®  is erlotinib. Each film-coated tablet contains 25 mg, 100 mg or 150 mg of erlotinib (as erlotinib hydrochloride) depending on the strength.

 

· The other ingredients are:

Tablet core: Lactose monohydrate

Cellulose microcrystalline (E460)

Sodium starch glycolate type A

Magnesium stearate (E470b)

Isopropyl alcohol

Film-coating

Poly (vinyl alcohol) (E1203)

Titanium dioxide (E171)

Macrogol 3350 (E1521)

Talc (E553b)

Methacrylic acid-ethyl acrylate copolymer (1:1) type A

Sodium hydrogen carbonate


Tyrox® 25 mg is supplied as a white to yellowish, round biconvex, film-coated tablets, with “25”engraved on one side of the tablet and is available in pack sizes of 30 tablets. Tyrox® 100 mg is supplied as a White to yellowish, round biconvex, film-coated tablets, with “100”engraved on one side of the tablet and is available in pack sizes of 30 tablets Tyrox® 150 mg is supplied as a white to yellowish, round biconvex, film-coated tablets, with “150”engraved on one side of the tablet and is available in pack sizes of 30 tablets.

MS Pharma Saudi,

Riyadh, Kingdome Saudi Arabia.

info-ksa@mspharma.com

 

 

Manufacturer by:

Remedica Ltd

Aharnon Str., Limassol Industrial Estate,

3056 Limassol, Cyprus.

 


Aug-19 SPM190536
  نشرة الدواء تحت مراجعة الهيئة العامة للغذاء والدواء (اقرأ هذه النشرة بعناية قبل البدء في استخدام هذا المنتج لأنه يحتوي على معلومات مهمة لك)

يحتوي دواء تايروكس ® على المادة الفعالة إيرلوتينيب. تايروكس ® هو دواء يستخدم في علاج السرطان عبر إيقاف نشاط بروتين يسمى مستقبل عامل النمو البشري (EGFR). ومن المعروف أن هذا البروتين عامل مشترك في قدرة الخلايا السرطانية على النمو والانتشار. يستخدم دواء تايروكس ® في المرضى البالغين. قد يتم وصف هذا الدواء لك إذا كنت تعاني من مرحلة متقدمة من سرطان الرئة بخلاف سرطان الخلايا الصغيرة. يمكن وصف هذا الدواء كعلاج أوّلي أو كعلاج مباشر إذا لم يحدث تغير بشكل كبير في السرطان بعد العلاج الكيماوي الأولي، وذلك في حالة إن كانت الخلايا السرطانية تحتوي على طفرات خاصة بمستقبل عامل النمو البشري (EGFR). كما يمكن وصف هذا الدواء أيضا في الحالات التي لم يساعدها العلاج الكيماوي في التعافي من المرض. كما يمكن وصف هذا الدواء أيضا بالإضافة إلى دواء آخر يسمى جيمسيتابين، إذا كنت تعاني من سرطان البنكرياس في مرحلة الانتشار البعيد للثانويات السرطانية.

 

لا تتناول  تايروكس ® إذا كنت:

لا تتناول دواء  تايروكس ® في الحالات الآتية:

  • إذا كانت لديك حساسية مفرطة لمادة إيرلوتينيب أو لأي مكونات أخرى في هذا الدواء (من المكونات المذكورة في الفقرة 6).

 

التحذيرات والاحتياطات

· يجب استشارة الطبيب إذا كنت تتناول أي دواء آخر يمكن أن يزيد أو ينقص من مستوى مادة إيرلوتينيب في الدم أو قد يؤثر على عملها (على سبيل المثال؛ مضادات الفطريات مثل كيتوكينازول، الأدوية المثبطة لإنزيم البروتياز، إريثرومايسن، كلاريثرومايسن، فينيتوين، كربامازيبن، باربيتيورات، ريفامبسين، سيبروفلوكساسين، أوميبرازول، رانتدين، نبتة سانت جونز ( نبتة العرن المثقوب)، الأدوية المثبطة لإنزيم بروتيازوم). قد تتسبب هذه الأدوية في بعض الحالات في الحدّ من فاعلية الدواء أو زيادة الأعراض الجانبية للدواء، لذلك قد يحتاج الطبيب لتعديل جرعة الدواء.  قد يقرر الطبيب تجنب إعطائك هذه الأدوية أثناء علاجك بدواء تايروكس ®.·  إذا كنت تتناول أدوية مضادة للتجلط (أدوية تساعد في الوقاية من تكون الجلطات أو تخثر الدم مثل وارفرين)، فقد يزيد دواء تايروكس ® من قابلية النزيف. استشر الطبيب لأنه سيحتاج إلى متابعتك بانتظام عبر إجراء بعض فحوصات الدم.

إذا كنت تتناول أدوية ستاتين (أدوية تعمل على خفض مستوى الكوليسترول)، فإن دواء تايروكس ® قد يزيد من المشاكل العضلية المتعلقة بتناول أدوية ستاتين، والتي بدورها قد تؤدي في بعض الحالات النادرة إلى تكسّر خطير في العضلات (انحلال البربيدات / العضلات) مما ينتج عنه ضرر في الكلية، لذلك يجب استشارة الطبيب في هذه الحالة. · استشر الطبيب إذا كنت ترتدي عدسات لاصقة و / أو لديك تاريخ مرضي للإصابة بمشاكل في العين مثل الجفاف الشديد في العين أو التهاب في مقدمة العين (القرنية) أو قرحة في الجزء الأمامي من العين. 

 

تناول أدوية أخر مع دواء تايروكس ®

يجب استشارة الطبيب في الآتية:

·  إذا عانيت من صعوبة مفاجئة في التنفس ويصاحبها سعال وارتفاع في درجة الحرارة، وذلك لأن الطبيب قد يلجأ إلى إيقاف دواء تايروكس ® وعلاجك بأدوية أخرى.

·  إذا كنت تعاني من إسهال لأن الطبيب قد يحتاج إلى علاجك بالأدوية المضادة للإسهال (مثل دواء لوبيرامايد).

·  إذا عانيت من إسهال شديد أو مستمر، أو غثيان أو فقدان الشهية أو قيء، فيجب استشارة الطبيب على الفور لأن ذلك قد يتطلب إيقاف تناول الدواء كما قد يحتاج الطبيب إلى إدخالك المستشفى من أجل تلقي العلاج اللازم.

·  إذا عانيت من ألم شديد في البطن أو تقشر شديد أو تكون بثور في الجلد. سيحتاج الطبيب حينها إلى التدخل أو إيقافك عن تناول الدواء.

·  إذا عانيت من احمرار أو ألم حاد أو متزايد في العينين، أو زيادة دموع العينين أو تشوش الرؤية و / أو الحساسية للضوء، فيجب إبلاغ الطبيب أو الممرضة على الفور لأنك قد تحتاج إلى تلقي العلاج بأسرع ما يمكن (يرجى الاطلاع على فقرة الأعراض الجانبية المحتملة أدناه).

·  إذا كنت تتناول في نفس الوقت أحد أدوية ستاتين ولاحظت ألم غير طبيعي في العضلات أو إيلام أو ضعف أو تقلصات. سيحتاج الطبيب حينها إلى التدخل أو إيقافك عن تناول الدواء.

 

تناول دواء  تايروكس ® مع الأطعمة والمشروبات والكحوليات

لا تتناول  تايروكس ® مع الأطعمة. يرجى الاطلاع على الفقرة الثالثة "طريقة تناول دواء  تايروكس ®".

 

الحمل والرضاعة الطبيعية

تجنبي الحمل أثناء تناول دواء  تايروكس ®. إذا كان بإمكانك الحمل، فيجب أن تستخدمي إحدى وسائل منع الحمل أثناء تلقيك العلاج بهذا الدواء، كما يجب الاستمرار عليها لمدة أسبوعين على الأقل بعد تناول آخر قرص من الدواء. إذا أصبحت حاملا أثناء علاجك بدواء  تايروكس ®، فيجب إبلاغ الطبيب على الفور والذي بدوره سيقرر إذا ما كان ينبغي المتابعة على الدواء أم إيقافه. لا تقومي بالرضاعة الطبيعية أثناء علاجك بدواء  تايروكس ®، كما يجب تجنب الرضاعة الطبيعية لمدة أسبوعين على الأقل بعد تناول آخر قرص من الدواء.

 

يجب استشارة الطبيب أو الصيدلي قبل تناول هذا الدواء في حالة السيدات الحوامل أو السيدات اللاتي تقمن بالرضاعة الطبيعية أو في حالات الاعتقاد بالحمل أو التخطيط لحدوث الحمل.

 

القيادة واستخدام الآلات

لم يتم دراسة التأثيرات المحتملة لتناول دواء تايروكس ® على القدرة على القيادة واستخدام الآلات، ولكن من المستبعد جدا أن يؤثر هذا الدواء على ذلك.

 

يحتوي دواء تايروكس ® على اللاكتوز أحادي الهيدرات

ينبغي استشارة الطبيب قبل تناول هذا الدواء إذا كان قد سبق وأخبرك الطبيب بعدم قدرتك على تحمل بعض أنواع السكر.

 

https://localhost:44358/Dashboard

يجب عليك تناول هذا الدواء وفقًا لتعليمات الطبيب. يرجى التوجه بالسؤال للطبيب أو الصيدلي في حالة عدم تأكدك. يجب تناول الدواء قبل مدة لا تقل عن ساعة من تناول الطعام أو بعد تناوله بساعتين. الجرعة الاعتيادية هي قرص واحد 150 ملغم من دواء تايروكس ® يُتناول مرة في اليوم، وذلك إذا كنت تعاني من سرطان الرئة بخلاف سرطان الخلايا الصغيرة. الجرعة الاعتيادية هي قرص واحد 100 ملغم من دواء تايروكس ® يُتناول مرة في اليوم، وذلك إذا كنت تعاني من ثانويات سرطانية منتشرة بعيدا من سرطان البنكرياس. يُعطى دواء تايروكس ® بالاقتران مع دواء جيمسيتابين أيضا.  قد يقوم الطبيب بالتعديل على جرعة الدواء بحيث يعطيك 50 ملغم بالتدريج. وفيما يتعلق بالجرعات المختلفة؛ فإن دواء تايروكس ® يتوفر بالجرعات الآتية: 25 ملغم أو 100 ملغم أو 150 ملغم.

 

استخدام الدواء مع الأطفال والمراهقين

لم يتم دراسة تناول دواء تايروكس ® في المرضى الذين يبلغون من العمر ما يقل عن 18 عاما. لا ينصح بتناول هذا الدواء في حالات الأطفال والمراهقين.

 

إذا تناولت جرعات من دواء تايروكس ® أكثر من الموصى بها

استشر الطبيب أو الصيدلي على الفور. قد تعاني من زيادة الأعراض الجانبية لذلك قد يقرر الطبيب التوقف عن تناول الدواء.

 

 

إذا نسيت تناول دواء تايروكس ®

إذا نسيت تناول جرعة أو أكثر من دواء تايروكس ®، فيجب استشارة الطبيب أو الصيدلي في أقرب وقت ممكن. لا تتناول جرعة مزدوجة لتعويض جرعتك الفائتة.

 

إذا توقفت عن تناول دواء تايروكس ®

من الضروري أن تستمر في تناول دواء تايروكس ® يوميا، طالما أن الطبيب قد وصفه لك. يرجى استشارة الطبيب أو الصيدلي إذا كانت لديك أية أسئلة إضافية فيما يتعلق بتناول هذا الدواء.

 

 

مرض الكلية أو الكبد

 من غير المعلوم ما إذا كان تأثير دواء تايروكس ® سيختلف إذا كنت تعاني من خلل في وظائف الكبد أو الكلية. لا ينصح بتناول هذا الدواء إذا كنت تعاني من مشاكل شديدة في الكبد أو الكلية.

 

 اضطراب التحويل إلى حمض جلوكويورونيك، مرض يشبه متلازمة جيلبرت

 يجب أن يعالجك الطبيب بحذر إذا كنت تعاني من اضطراب في التحويل إلى حمض جلوكويورونيك، المرض الذي يشبه متلازمة جيلبرت.

 

 التدخين

 يُنصح بالتوقف عن التدخين إذا كنت تتناول دواء تايروكس ® وذلك لأن التدخين قد يقلل من مستوى تواجد الدواء في الدم.

 

مثل كافة الأدوية، فإن هذا الدواء يمكن أن يتسبب في ظهور بعض الأعراض جانبية، وعلى الرغم من ذلك فإنها لا تظهر على جميع المرضى. أخبر الطبيب في أقرب وقت ممكن عند ملاحظة أي من هذه الأعراض التالية: قد يحتاج الطبيب في بعض الحالات إلى تقليل جرعتك من الدواء أو إيقافه.

· الإسهال والقيء (أعراض جانبية مألوفة جدا: قد تؤثر في أكثر من 1 بين 10 أشخاص). قد يؤدي الإسهال المستمر والشديد إلى انخفاض في مستوى البوتاسيوم في الدم وخلل في وظائف الكلية خاصة إذا كنت تتلقى أدوية أخرى للعلاج الكيماوي في نفس الوقت.  إذا عانيت من إسهال شديد جدا أو مستمر فيجب استشارة الطبيب على الفور لأن ذلك قد يتطلب من الطبيب إدخالك إلى المستشفى من أجل تلقي العلاج اللازم.

· تهيج العين بسبب التهاب الملتحمة / التهاب القرنية والملتحمة (أعراض جانبية مألوفة جدا: قد تؤثر في أكثر من 1 بين 10 أشخاص) والتهاب القرنية (أعراض جانبية مألوفة: قد تؤثر في 1 بين 10 أشخاص).

 

حالة من أمراض الرئة تسمى مرض الرئة الخلالي (من الأعراض غير المألوفة في المرضى الأوربيين؛ ومألوف في المرضى اليابيانيين؛ حيث أنه قد يؤثر في 1 من بين 100 شخص في الأوربيين بينما قد يؤثر في 1 من بين 10  أشخاص في اليابانيين). يمكن أن يكون لهذا المرض صلة بالتطور الطبيعي لحالتك الصحية، كما أنه قد يتسبب في نتائج مميتة في بعض الحالات.  إذا عانيت من أعراض مثل صعوبة مفاجئة في التنفس ويصاحبها سعال وارتفاع في درجة الحرارة، فيجب استشارة الطبيب على الفور لأن من المحتمل أنك تعاني من هذا المرض. قد يقرر الطبيب إيقاف علاجك بهذا الدواء بشكل دائم.

· لوحظ إصابة بعض الحالات بانثقاب في الجهاز الهضمي (أعراض جانبية غير مألوفة: قد يؤثر في 1 من بين 100 شخص).  أخبر الطبيب إذا كنت تعاني من ألم شديد في البطن. كما يجب إبلاغ الطبيب أيضا إذا سبق وعانيت في الماضي من قرحة في المعدة أو الداء الرتجي، لأن ذلك قد يزيد من خطورة حدوثهم مرة أخرى.

· لوحظ في بعض الحالات النادرة الإصابة بفشل كبدي (أعراض جانبية نادرة: قد تؤثر في 1 من بين 1,000 شخص). قد يقرر الطبيب إيقاف تناول هذا الدواء إذا أشارت فحوصات الدم لوجود تغيرات شديدة في وظائف الكبد. الأعراض الجانبية المألوفة جدا (قد تؤثر في أكثر من 1 بين 10 أشخاص):

·  طفح جلدي والذي قد يحدث أو يزداد سوءا في أجزاء الجسم المعرضة للشمس. ينصح عند التعرض للشمس ارتداء ملابس للحماية و / أو استخدام كريمات الحماية من أشعة الشمس (مثل الأدوية التي تحتوي على المعادن).

· عدوي

· فقدان الشهية، نقصان الوزن

· الاكتئاب

· الصداع، تغير في الإحساس بالجلد أو الشعور بالتنميل / الخدر في الأطراف

· صعوبة في التنفس، سعال

· غثيان

· تهيج الفم

· ألم في المعدة، عسر هضم، انتفاخ

· نتائج غير طبيعية في اختبارات الدم لفحص وظائف الكبد

· الحكة، جفاف الجلد، فقدان الشعر

·الإرهاق، ارتفاع درجة الحرارة، القشعريرة.

الأعراض الجانبية المألوفة (قد تؤثر في 1 من بين 10 أشخاص):

· نزيف من الأنف

· نزيف من المعدة أو الأمعاء

· رد فعل تحسسي حول الأظافر

· التهاب في بصيلات الشعر

· حب الشباب

· تشقق في الجلد (شقوق الجلد)

· نقص وظائف الكلية (وذلك عندما يتم إعطاء الدواء بخلاف دواعي الاستخدام المعتمدة برفقة أدوية العلاج الكيماوي الأخرى)

 الأعراض الجانبية غير المألوفة (تؤثر في 1 من بين 100 شخص):

· تغيرات في أهداب العين (الرموش)

· زيادة شعر الجسم والوجه بنمط نمو الشعر الذكوري

· تغيرات في حاجب العين

تقصف وسهولة انخلاع الأظافر

 الأعراض الجانبية النادرة (قد تؤثر في 1 من بين 1000 شخص):

· احمرار أو ألم في راحة اليد أو باطن القدم (متلازمة خلل الحس الاحمراري الراحي الأخمصي)

 

 الأعراض الجانبية النادرة جدا (قد تؤثر في 1 من بين 10,000 شخص):

· حالة انثقاب أو تقرح القرنية

· تكون بثور أو تقشر شديد في الجلد (مما يشير إلى متلازمة ستيفن جونسون)

·التهاب في الجزء الملون من العين

الإبلاغ عن الأعراض الجانبية:

 

يُحفظ الدواء بعيدا عن متناول الأطفال.

 لا تستخدم الدواء بعد مرور تاريخ انتهاء الصلاحية الموضح على شريط الأقراص وعلى العبوة بعد كلمة EXP.

 يشير تاريخ انتهاء الصلاحية إلى اليوم الأخير في الشهر.

يحفظ في درجة حرارة لاتزيد عن 30 درجة مئوية.

 لا تقم بإلقاء أية أدوية في مياه الصرف أو في النفايات المنزلية.

 وبدلاً عن ذلك قم باستشارة الصيدلي عن كيفية التخلص الآمن من الأدوية التي لم تعد بحاجة إليها.

 ستساعد هذه الإجراءات في المحافظة على البيئة. 6

محتويات دواء تايروكس ®

المادة الفعالة في دواء  تايروكس ® هي إيرلوتينيب.  يحتوي كل قرص مغلف من الدواء على 25 ملغم أو 100 ملغم أو 150 ملغم من مادة إيرلوتينيب (في صورة إيرلوتينيب هيدروكلوريد) وذلك اعتمادا على جرعة الدواء.

 

·  باقي المكونات:

 محتويات لب القرص:

 لاكتوز أحادي الهيدرات

سليلوز دقيق البلورات (E460)

نشا جلايكولات الصوديوم من النوع A

استيارات الماغنيسيوم (E470b)

كحول الآيزوبروبيل

 

محتويات الغشاء المغلف للقرص:

بولي (كحول الفينيل) (E1203)

ثاني أكسيد التيتانيوم (E171)

ماكروجول 3350 (E1521)

التالك (E553b)

بوليمر مشترك الميثاكريليك، حمض إيثيل أكريليت  (1 : 1) من النوع A

كربونات الصوديوم الهيدروجينية

 

تايروكس ® 25 ملغم؛ يتوفر على شكل قرص مغلف لونه بين الأبيض والأصفر، ودائري ومحدب الوجهين، ومنقوش على أحد جوانب القرص "25" ويأتي في عبوة تحتوي على 30 قرص.

 تايروكس ® 100 ملغم؛ يتوفر على شكل قرص مغلف لونه بين الأبيض والأصفر، ودائري ومحدب الوجهين، ومنقوش على أحد جوانب القرص "100" ويأتي في عبوة تحتوي على 30 قرص.

تايروكس ® 150 ملغم؛ يتوفر على شكل قرص مغلف لونه بين الأبيض والأصفر، ودائري ومحدب الوجهين، ومنقوش على أحد جوانب القرص "150 " ويأتي في عبوة تحتوي على 30 قرص.

إم إس فارما السعودية

الرياض ، المملكة العربية السعودية .

info-ksa@mspharma.com

 

صنعت بواسطة :

ريميديكا المحدودة

شارع أهارنون ، منطقة ليماسول الصناعية،

3056 ليماسول ، قبرص.

Aug-19 SPM190536
 Read this leaflet carefully before you start using this product as it contains important information for you

Tyrox 25 mg film-coated tablets Tyrox 100 mg film-coated tablets Tyrox 150 mg film-coated tablets

Tyrox 25 mg film coated tablets Each film-coated tablet contains 25 mg erlotinib (as erlotinib hydrochloride). Tyrox 100 mg film-coated tablets Each film-coated tablet contains 100 mg erlotinib (as erlotinib hydrochloride). Tyrox 150 mg film-coated tablets Each film-coated tablet contains 150 mg erlotinib (as erlotinib hydrochloride). Excipients with known effect Tyrox 25 mg film coated tablets Each 25 mg film-coated tablet contains 23.98 mg Lactose monohydrate. Tyrox 100 mg film-coated tablets Each 100 mg film-coated tablet contains 95.93 mg Lactose monohydrate. Tyrox 150 mg film-coated tablets Each 150 mg film-coated tablet contains 143.90 mg Lactose monohydrate. For the full list of excipients, see section 6.1.

Film-coated tablet. Tyrox 25 mg film coated tablets White to yellowish, round, biconvex tablets with ‘25’ engraved on one side. Tyrox 100 mg film-coated tablets White to yellowish, round, biconvex tablets with ‘100’ engraved on one side. Tyrox 150 mg film-coated tablets White to yellowish, round, biconvex tablets with ‘150’ engraved on one side.

Non-Small Cell Lung Cancer (NSCLC)

 

Tyrox is indicated for the first-line treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with EGFR activating mutations.

 

Tyrox is also indicated for switch maintenance treatment in patients with locally advanced or metastatic NSCLC with EGFR activating mutations and stable disease after first-line chemotherapy.

 

Tyrox is also indicated for the treatment of patients with locally advanced or metastatic NSCLC after failure of at least one prior chemotherapy regimen. In patients with tumours without EGFR activating mutations, Tyrox is indicated when other treatment options are not considered suitable.

 

When prescribing Tyrox, factors associated with prolonged survival should be taken into account.

 

No survival benefit or other clinically relevant effects of the treatment have been demonstrated in patients with Epidermal Growth Factor Receptor (EGFR)-IHC negative tumours (see section 5.1).

 

Pancreatic cancer

 

Tyrox in combination with gemcitabine is indicated for the treatment of patients with metastatic pancreatic cancer.

 

When prescribing Tyrox, factors associated with prolonged survival should be taken into account (see sections 4.2 and 5.1).

 

No survival advantage could be shown for patients with locally advanced disease.

 


Tyrox treatment should be supervised by a physician experienced in the use of anti-cancer therapies.

 

Patients with Non-Small Cell Lung Cancer

 

EGFR mutation testing should be performed in accordance with the approved indications (see section 4.1).

The recommended daily dose of Tyrox is 150 mg taken at least one hour before or two hours after the ingestion of food.

 

Patients with pancreatic cancer

 

The recommended daily dose of Tyrox is 100 mg taken at least one hour before or two hours after the ingestion of food, in combination with gemcitabine (see the summary of product characteristics of gemcitabine for the pancreatic cancer indication). In patients who do not develop rash within the first 4 – 8 weeks of treatment, further Tyrox treatment should be re-assessed (see section 5.1).

 

When dose adjustment is necessary, the dose should be reduced in 50 mg steps (see section 4.4).

Tyrox is available in strengths of 25 mg, 100 mg and 150 mg.

Concomitant use of CYP3A4 substrates and modulators may require dose adjustment (see section 4.5).

 

Hepatic impairment

 

Erlotinib is eliminated by hepatic metabolism and biliary excretion. Although erlotinib exposure was similar in patients with moderately impaired hepatic function (Child-Pugh score 7-9) compared with patients with adequate hepatic function, caution should be used when administering Tyrox to patients with hepatic impairment. Dose reduction or interruption of Tyrox should be considered if severe adverse reactions occur. The safety and efficacy of erlotinib has not been studied in patients with severe hepatic dysfunction (AST/SGOT and ALT/SGPT> 5 x ULN). Use of Tyrox in patients with severe hepatic dysfunction is not recommended (see section 5.2).

 

Renal impairment

 

The safety and efficacy of erlotinib has not been studied in patients with renal impairment (serum creatinine concentration >1.5 times the upper normal limit). Based on pharmacokinetic data no dose adjustments appear necessary in patients with mild or moderate renal impairment (see section 5.2). Use of Tyrox in patients with severe renal impairment is not recommended.

 

Paediatric population

 

The safety and efficacy of erlotinib in the approved indications has not been established in patients under the age of 18 years. Use of Tyrox in paediatric patients is not recommended. 4

Smokers

Cigarette smoking has been shown to reduce erlotinib exposure by 50-60%. The maximum tolerated dose of Tyrox in NSCLC patients who currently smoke cigarettes was 300 mg. The 300 mg dose did not show improved efficacy in second line treatment after failure of chemotherapy compared to the recommended 150 mg dose in patients who continue to smoke cigarettes. Safety data were comparable between the 300 mg and 150 mg doses; however, there was a numerical increase in the incidence of rash, interstitial lung disease and diarrhoea, in patients receiving the higher dose of erlotinib. Current smokers should be advised to stop smoking (see sections 4.4, 4.5, 5.1 and 5.2). Therefore, current smokers should be

advised to stop smoking, as plasma concentrations of erlotinib in smokers as compared

to non-smokers are reduced.


Hypersensitivity to erlotinib or to any of the excipients listed in section 6.1.

Assessment of EGFR mutation status

 

When considering the use of Tyrox as a first line or maintenance treatment for locally advanced or metastatic NSCLC, it is important that the EGFR mutation status of a patient is determined.

 

A validated, robust, reliable and sensitive test with a prespecified positivity threshold and demonstrated utility for the determination of EGFR mutation status, using either tumor DNA derived from a tissue sample or circulating free DNA (cfDNA) obtained from a blood (plasma) sample, should be performed according to local medical practice.

 

If a plasma-based cfDNA test is used and the result is negative for activating mutations, perform a tissue test wherever possible due to the potential for false negative results from a plasma-based test.

 

Smokers

 

Current smokers should be advised to stop smoking, as plasma concentrations of erlotinib in smokers as compared to non-smokers are reduced. The degree of reduction is likely to be clinically significant (see sections 4.2, 4.5, 5.1 and 5.2).

 

Interstitial Lung Disease

 

Cases of interstitial lung disease (ILD)-like events, including fatalities, have been reported uncommonly in patients receiving Tyrox for treatment of non-small cell lung cancer (NSCLC), pancreatic cancer or other advanced solid tumours. In the pivotal study BR.21 in NSCLC, the incidence of ILD (0.8%) was the same in both the placebo and Tyrox groups. In a meta-analysis of NSCLC randomised controlled clinical trials (excluding phase I and single-arm phase II studies due to lack of control groups), the incidence of ILD-like events was 0.9% on Tyrox compared to 0.4% in patients in the control arms. In the pancreatic cancer study in combination with gemcitabine, the incidence of ILD-like events was 2.5% in the Tyrox plus gemcitabine group versus 0.4% in the placebo plus gemcitabine treated group. Reported diagnoses in patients suspected of having ILD-like events included pneumonitis, radiation pneumonitis, hypersensitivity pneumonitis, interstitial pneumonia, interstitial lung disease, obliterative bronchiolitis, pulmonary fibrosis, Acute Respiratory Distress Syndrome (ARDS), alveolitis, and lung infiltration. Symptoms started from a few days to several months after initiating Tyrox therapy. Confounding or contributing factors such as concomitant or prior chemotherapy, prior radiotherapy, pre-existing parenchymal lung disease, metastatic lung disease, or pulmonary infections were frequent. A higher incidence of ILD (approximately 5% with a mortality rate of 1.5%) is seen among patients in studies conducted in Japan.

 

In patients who develop acute onset of new and/or progressive unexplained pulmonary symptoms such as dyspnoea, cough and fever, Tyrox therapy should be interrupted pending diagnostic evaluation. Patients treated concurrently with erlotinib and gemcitabine should be monitored carefully for the possibility to develop ILD-like toxicity. If ILD is diagnosed, Tyrox should be discontinued and appropriate treatment initiated as necessary (see section 4.8).

 

Diarrhoea, dehydration, electrolyte imbalance and renal failure

 

Diarrhoea (including very rare cases with a fatal outcome) has occurred in approximately 50% of patients on Tyrox and moderate or severe diarrhoea should be treated with e.g. loperamide. In some cases dose reduction may be necessary. In the clinical studies doses were reduced by 50 mg steps. Dose reductions by 25 mg steps have not been investigated. In the event of severe or persistent diarrhoea, nausea, anorexia, or vomiting associated with dehydration, Tyrox therapy should be interrupted and appropriate measures should be taken to treat the dehydration (see section 4.8). There have been rare reports of hypokalaemia and renal failure (including fatalities). Some cases were secondary to severe dehydration due to diarrhoea, vomiting and/or anorexia, while others were confounded by concomitant chemotherapy. In more severe or persistent cases of diarrhoea, or cases leading to dehydration, particularly in groups of patients with aggravating risk factors (especially concomitant chemotherapy and other medications, symptoms or diseases or other predisposing conditions including advanced age), Tyrox therapy should be interrupted and appropriate measures should be taken to intensively rehydrate the patients intravenously. In addition, renal function and serum electrolytes including potassium should be monitored in patients at risk of dehydration.

 

Hepatitis, hepatic failure

 

Rare cases of hepatic failure (including fatalities) have been reported during use of Tyrox. Confounding factors have included pre-existing liver disease or concomitant hepatotoxic medications. Therefore, in such patients, periodic liver function testing should be considered. Tyrox dosing should be interrupted if changes in liver function are severe (see section 4.8). Tyrox is not recommended for use in patients with severe hepatic dysfunction.

 

 

 

Gastrointestinal perforation

 

Patients receiving Tyrox are at increased risk of developing gastrointestinal perforation, which was observed uncommonly (including some cases with a fatal outcome). Patients receiving concomitant anti-angiogenic agents, corticosteroids, NSAIDs, and/or taxane based chemotherapy, or who have prior history of peptic ulceration or diverticular disease are at increased risk. Tyrox should be permanently discontinued in patients who develop gastrointestinal perforation (see section 4.8).

 

Bullous and exfoliative skin disorders

 

Bullous, blistering and exfoliative skin conditions have been reported, including very rare cases suggestive of Stevens-Johnson syndrome/Toxic epidermal necrolysis, which in some cases were fatal (see section 4.8). Tyrox treatment should be interrupted or discontinued if the patient develops severe bullous, blistering or exfoliating conditions. Patients with bullous and exfoliative skin disorders should be tested for skin infection and treated according to local management guidelines.

 

Ocular disorders

 

Patients presenting with signs and symptoms suggestive of keratitis such as acute or worsening: eye inflammation, lacrimation, light sensitivity, blurred vision, eye pain and/or red eye should be referred promptly to an ophthalmology specialist. If a diagnosis of ulcerative keratitis is confirmed, treatment with Tyrox should be interrupted or discontinued. If keratitis is diagnosed, the benefits and risks of continuing treatment should be carefully considered. Tyrox should be used with caution in patients with a history of keratitis, ulcerative keratitis or severe dry eye. Contact lens use is also a risk factor for keratitis and ulceration.Very rare cases of corneal perforation or ulceration have been reported during use of Tyrox (see section 4.8).

 

Interactions with other medicinal products

 

Potent inducers of CYP3A4 may reduce the efficacy of erlotinib whereas potent inhibitors of CYP3A4 may lead to increased toxicity. Concomitant treatment with these types of agents should be avoided (see section 4.5).

 

Other forms of interactions

 

Erlotinib is characterised by a decrease in solubility at pH above 5. Medicinal products that alter the pH of the upper Gastro-Intestinal (GI) tract, like proton pump inhibitors, H2 antagonists and antacids, may alter the solubility of erlotinib and hence its bioavailability. Increasing the dose of Tyrox when co-administered with such agents is not likely to compensate for the loss of exposure. Combination of erlotinib with proton pump inhibitors should be avoided. The effects of concomitant administration of erlotinib with H2 antagonists and antacids are unknown; however, reduced bioavailability is likely. Therefore, concomitant administration of these combinations should be avoided (see section 4.5). If the use of antacids is considered necessary during treatment with Tyrox, they should be taken at least 4 hours before or 2 hours after the daily dose of Tyrox.

The tablets contain lactose and should not be administered to patients with rare hereditary problems of galactose intolerance, Lapp lactase deficiency or glucose-galactose malabsorption.

 

 


Interaction studies have only been performed in adults.

 

Erlotinib and other CYP substrates

 

Erlotinib is a potent inhibitor of CYP1A1, and a moderate inhibitor of CYP3A4 and CYP2C8, as well as a strong inhibitor of glucuronidation by UGT1A1 in vitro.

The physiological relevance of the strong inhibition of CYP1A1 is unknown due to the very limited expression of CYP1A1 in human tissues.

 

When erlotinib was co-administered with ciprofloxacin, a moderate CYP1A2 inhibitor, the erlotinib exposure [AUC] increased significantly by 39%, while no statistically significant change in Cmax was found. Similarly, the exposure to the active metabolite increased by about 60% and 48% for AUC and Cmax, respectively. The clinical relevance of this increase has not been established. Caution should be exercised when ciprofloxacin or potent CYP1A2 inhibitors (e.g. fluvoxamine) are combined with erlotinib. If adverse reactions related to erlotinib are observed, the dose of erlotinib may be reduced.

 

Pre-treatment or co-administration of Tyrox did not alter the clearance of the prototypical CYP3A4 substrates, midazolam and erythromycin, but did appear to decrease the oral bioavailability of midazolam by up to 24%. In another clinical study, erlotinib was shown not to affect pharmacokinetics of the concomitantly administered CYP3A4/2C8 substrate paclitaxel. Significant interactions with the clearance of other CYP3A4 substrates are therefore unlikely.

 

The inhibition of glucuronidation may cause interactions with medicinal products which are substrates of UGT1A1 and exclusively cleared by this pathway. Patients with low expression levels of UGT1A1 or genetic glucuronidation disorders (e.g. Gilbert’s disease) may exhibit increased serum concentrations of bilirubin and must be treated with caution.

 

Erlotinib is metabolised in the liver by the hepatic cytochromes in humans, primarily CYP3A4 and to a lesser extent by CYP1A2. Extrahepatic metabolism by CYP3A4 in intestine, CYP1A1 in lung, and CYP1B1 in tumour tissue also potentially contribute to the metabolic clearance of erlotinib. Potential interactions may occur with active substances which are metabolised by, or are inhibitors or inducers of, these enzymes.

 

Potent inhibitors of CYP3A4 activity decrease erlotinib metabolism and increase erlotinib plasma concentrations. In a clinical study, the concomitant use of erlotinib with ketoconazole (200 mg orally twice daily for 5 days), a potent CYP3A4 inhibitor, resulted in an increase of erlotinib exposure (86% of AUC and 69% of Cmax). Therefore, caution should be used when erlotinib is combined with a potent CYP3A4 inhibitor, e.g. azole antifungals (i.e. ketoconazole, itraconazole, voriconazole), protease inhibitors, erythromycin or clarithromycin. If necessary the dose of erlotinib should be reduced, particularly if toxicity is observed.

 

Potent inducers of CYP3A4 activity increase erlotinib metabolism and significantly decrease erlotinib plasma concentrations. In a clinical study, the concomitant use of erlotinib and rifampicin (600 mg orally once daily for 7 days), a potent CYP3A4 inducer, resulted in a 69% decrease in the median erlotinib AUC. Co-administration of rifampicin with a single 450 mg dose of Tyrox resulted in a mean erlotinib exposure (AUC) of 57.5% of that after a single 150 mg Tyrox dose in the absence of rifampicin treatment. Co-administration of Tyrox with CYP3A4 inducers should therefore be avoided. For patients who require concomitant treatment with Tyrox and a potent CYP3A4 inducer such as rifampicin an increase in dose to 300 mg should be considered while their safety (including renal and liver functions and serum electrolytes) is closely monitored, and if well tolerated for more than 2 weeks, further increase to 450 mg could be considered with close safety monitoring. Reduced exposure may also occur with other inducers e.g. phenytoin, carbamazepine, barbiturates or St. John’s Wort (hypericum perforatum). Caution should be observed when these active substances are combined with erlotinib. Alternate treatments lacking potent CYP3A4 inducing activity should be considered when possible.

 

Erlotinib and coumarin-derived anticoagulants

 

Interaction with coumarin-derived anticoagulants including warfarin leading to increased International Normalized Ratio (INR) and bleeding events, which in some cases were fatal, have been reported in patients receiving Tyrox. Patients taking coumarin-derived anticoagulants should be monitored regularly for any changes in prothrombin time or INR.

 

Erlotinib and statins

 

The combination of Tyrox and a statin may increase the potential for statin-induced myopathy, including rhabdomyolysis, which was observed rarely.

 

Erlotinib and smokers

 

Results of a pharmacokinetic interaction study indicated a significant 2.8-, 1.5- and 9-fold reduced AUCinf, Cmax and plasma concentration at 24 hours, respectively, after administration of Tyrox in smokers as compared to non-smokers. Therefore, patients who are still smoking should be encouraged to stop smoking as early as possible before initiation of treatment with Tyrox, as plasma erlotinib concentrations are reduced otherwise. Based on the data from the CURRENTS study, no evidence was seen for any benefit of a higher erlotinib dose of 300 mg when compared with the recommended dose of 150 mg in active smokers. Safety data were comparable between the 300 mg and 150 mg doses; however, there was a numerical increase in the incidence of rash, interstitial lung disease and diarrhoea, in patients receiving the higher dose of erlotinib (see sections 4.2, 4.4, 5.1 and 5.2).

 

Erlotinib and P-glycoprotein inhibitors

 

Erlotinib is a substrate for the P-glycoprotein active substance transporter. Concomitant administration of inhibitors of Pgp, e.g. cyclosporine and verapamil, may lead to altered distribution and/or altered elimination of erlotinib. The consequences of this interaction for e.g. CNS toxicity have not been established. Caution should be exercised in such situations.

Erlotinib and medicinal products altering pH

Erlotinib is characterised by a decrease in solubility at pH above 5. Medicinal products that alter the pH of the upper Gastro-Intestinal (GI) tract may alter the solubility of erlotinib and hence its bioavailability. Co-administration of erlotinib with omeprazole, a proton pump inhibitor (PPI), decreased the erlotinib exposure [AUC] and maximum concentration [Cmax] by 46% and 61%, respectively. There was no change to Tmax or half-life. Concomitant administration of Tyrox with 300 mg ranitidine, an H2-receptor antagonist, decreased erlotinib exposure [AUC] and maximum concentrations [Cmax] by 33% and 54%, respectively. Increasing the dose of Tyrox when co-administered with such agents is not likely to compensate for this loss of exposure. However, when Tyrox was dosed in a staggered manner 2 hours before or 10 hours after ranitidine 150 mg b.i.d., erlotinib exposure [AUC] and maximum concentrations [Cmax] decreased only by 15% and 17%, respectively. The effect of antacids on the absorption of erlotinib has not been investigated but absorption may be impaired, leading to lower plasma levels. In summary, the combination of erlotinib with proton pump inhibitors should be avoided. If the use of antacids is considered necessary during treatment with Tyrox, they should be taken at least 4 hours before or 2 hours after the daily dose of Tyrox. If the use of ranitidine is considered, it should be used in a staggered manner; i.e. Tyrox must be taken at least 2 hours before or 10 hours after ranitidine dosing.

 

Erlotinib and Gemcitabine

 

In a Phase Ib study, there were no significant effects of gemcitabine on the pharmacokinetics of erlotinib nor were there significant effects of erlotinib on the pharmacokinetics of gemcitabine.

 

Erlotinib and Carboplatin/Paclitaxel

 

Erlotinib increases platinum concentrations. In a clinical study, the concomitant use of erlotinib with carboplatin and paclitaxel led to an increase of total platinum AUC0-48 of 10.6%. Although statistically significant, the magnitude of this difference is not considered to be clinically relevant. In clinical practice, there may be other co-factors leading to an increased exposure to carboplatin like renal impairment. There were no significant effects of carboplatin or paclitaxel on the pharmacokinetics of erlotinib.

 

Erlotinib and Capecitabine

 

Capecitabine may increase erlotinib concentrations. When erlotinib was given in combination with capecitabine, there was a statistically significant increase in erlotinib AUC and a borderline increase in Cmax when compared with values observed in another study in which erlotinib was given as single agent. There were no significant effects of erlotinib on the pharmacokinetics of capecitabine.

 

 

 

 

 

Erlotinib and proteasome inhibitors

 

Due to the working mechanism, proteasome inhibitors including bortezomib may be expected to influence the effect of EGFR inhibitors including erlotinib. Such influence is supported by limited clinical data and preclinical studies showing EGFR degradation through the proteasome.

 


Pregnancy

 

There are no adequate data for the use of erlotinib in pregnant women. Studies in animals have shown no evidence of teratogenicity or abnormal parturition. However, an adverse effect on the pregnancy can not be excluded as rat and rabbit studies have shown increased embryo/foetal lethality (see section 5.3). The potential risk for humans is unknown.

 

Women of childbearing potential

 

Women of childbearing potential must be advised to avoid pregnancy while on Tyrox. Adequate contraceptive methods should be used during therapy, and for at least 2 weeks after completing therapy. Treatment should only be continued in pregnant women if the potential benefit to the mother outweighs the risk to the foetus.

 

Breast-feeding

 

It is not known whether erlotinib is excreted in human milk. No studies have been conducted to assess the impact of Tyrox on milk production or its presence in breast milk. As the potential for harm to the nursing infant is unknown, mothers should be advised against breast-feeding while receiving Tyrox and for at least 2 weeks after the final dose.

 

Fertility

 

Studies in animals have shown no evidence of impaired fertility. However, an adverse effect on the fertility can not be excluded as animal studies have shown effects on reproductive parameters (see section 5.3). The potential risk for humans is unknown.

 


No studies on the effects on the ability to drive and use machines have been performed; however erlotinib is not associated with impairment of mental ability.

 

 

 


Safety evaluation of Tyrox is based on the data from more than 1500 patients treated with at least one 150 mg dose of Tyrox monotherapy and more than 300 patients who received Tyrox 100 or 150 mg in combination with gemcitabine.

 

The incidence of adverse drug reactions (ADRs) from clinical trials reported with Tyrox alone or in combination with chemotherapy are summarised by National Cancer Institute-Common Toxicity Criteria (NCI-CTC) Grade in Table 1. The listed ADRs were those reported in at least 10% (in the Tyrox group) of patients and occurred more frequently (≥3%) in patients treated with Tyrox than in the comparator arm. Other ADRs including those from other studies are summarized in Table 2.

 

Adverse drug reactions from clinical trials (Table 1) are listed by MedDRA system organ class. The corresponding frequency category for each adverse drug reaction is based on the following convention: very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), very rare (<1/10,000).

 

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

 

Non-small cell lung cancer (Tyrox administered as monotherapy):

 

First-Line Treatment of Patients with EGFR Mutations

In an open-label, randomised phase III study, ML20650 conducted in 154 patients, the safety of Tyrox for first-line treatment of NSCLC patients with EGFR activating mutations was assessed in 75 patients; no new safety signals were observed in these patients.

 

The most frequent ADRs seen in patients treated with Tyrox in study ML20650 were rash and diarrhoea (any Grade 80% and 57%, respectively), most were Grade 1/2 in severity and manageable without intervention. Grade 3 rash and diarrhoea occurred in 9% and 4% of patients, respectively. No Grade 4 rash or diarrhoea was observed. Both rash and diarrhoea resulted in discontinuation of Tyrox in 1% of patients. Dose modifications (interruptions or reductions) for rash and diarrhoea were needed in 11% and 7% of patients, respectively.

 

Maintenance treatment

 

In two other double-blind, randomised, placebo-controlled Phase III studies BO18192 (SATURN) and BO25460 (IUNO); Tyrox was administered as maintenance after first-line chemotherapy. These studies were conducted in a total of 1532 patients with advanced, recurrent or metastatic NSCLC following first-line standard platinum-based chemotherapy, no new safety signals were identified.

 

The most frequent ADRs seen in patients treated with Tyrox in studies BO18192 and BO25460 were rash (BO18192: all grades 49.2%, grade 3: 6.0%; BO25460: all grades 39.4%, grade 3: 5.0%) and diarrhoea (BO18192: all grades 20.3%, grade 3: 1.8%; BO25460: all grades 24.2%, grade 3: 2.5%). No Grade 4 rash or diarrhoea was observed in either study. Rash and diarrhoea resulted in discontinuation of Tyrox in 1% and <1% of patients, respectively, in study BO18192, while no patients discontinued for rash or diarrhoea in BO25460. Dose modifications (interruptions or reductions) for rash and diarrhoea were needed in 8.3% and 3% of patients, respectively, in study BO18192 and 5.6% and 2.8% of patients, respectively, in study BO25460.

 

Second and Further Line Treatment

 

In a randomised double-blind study (BR.21; Tyrox administered as second line therapy), rash (75%) and diarrhoea (54%) were the most commonly reported adverse drug reactions (ADRs). Most were Grade 1/2 in severity and manageable without intervention. Grade 3/4 rash and diarrhoea occurred in 9% and 6%, respectively in Tyrox -treated patients and each resulted in study discontinuation in 1% of patients. Dose reduction for rash and diarrhoea was needed in 6% and 1% of patients, respectively.

In study BR.21, the median time to onset of rash was 8 days, and the median time to onset of diarrhoea was 12 days.

 

In general, rash manifests as a mild or moderate erythematous and papulopustular rash, which may occur or worsen in sun exposed areas. For patients who are exposed to sun, protective clothing, and/or use of sunscreen (e.g. mineral-containing) may be advisable.

 

Pancreatic cancer (Tyrox administered concurrently with gemcitabine)

 

The most common adverse reactions in pivotal study PA.3 in pancreatic cancer patients receiving Tyrox 100 mg plus gemcitabine were fatigue, rash and diarrhoea. In the Tyrox plus gemcitabine arm, Grade 3/4 rash and diarrhoea were each reported in 5% of patients. The median time to onset of rash and diarrhoea was 10 days and 15 days, respectively. Rash and diarrhoea each resulted in dose reductions in 2% of patients, and resulted in study discontinuation in up to 1% of patients receiving Tyrox plus gemcitabine.

 

Table 1: ADRs occurring in ≥ 10% of patients in BR.21 (treated with Tyrox) and PA.3 (treated with Tyrox plus gemcitabine) studies and ADRs occurring more frequently (≥ 3%) than placebo in BR.21 (treated with Tyrox) and PA.3 (treated with Tyrox plus gemcitabine) studies

 

 

 

Tyrox (BR.21) N = 485

Tyrox (PA.3) N = 259

 

Frequency category of highest incidence

 

NCI-CTC Grade

Any Grade

 

3

 

4

Any Grade

 

3

 

4

 

 

 

MedDRA Preferred Term

%

%

%

%

%

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Infections and infestations

Infection*

 

24

 

4

 

0

 

31

 

3

 

<1

 

 

 

 

very common

Metabolism and nutrition disorders

Anorexia

Weight decreased

 

52

-

 

8

-

 

1

-

 

- 39

 

- 2

 

- 0

 

 

 

 

very common very common

Eye disorders Keratoconjunctivitis sicca Conjunctivitis

 

12

12

 

0

<1

 

0

0

 

-

-

 

-

-

 

-

-

 

 

 

 

very common very common

Psychiatric disorders

Depression

 

-

 

-

 

-

 

19

 

2

 

0

 

 

 

 

very common

Nervous system disorders

Neuropathy Headache

 

-

-

 

-

-

 

-

-

 

13

15

 

1

<1

 

<1

0

 

 

 

 

very common very common

Respiratory, thoracic and mediastinal disorders

Dyspnoea Cough

 

 

 

41

33

 

17

4

 

11

0

 

- 16

 

- 0

 

- 0

 

 

 

 

very common very common

Gastrointestinal disorders

Diarrhoea** Nausea Vomiting Stomatitis Abdominal pain Dyspepsia Flatulence

 

54

33

23

17

11

-

-

 

6

3

2

<1

2

-

-

 

<1

0

<1

0

<1

-

-

 

48

-

- 22

- 17

13

 

5

-

-

<1

-

<1

0

 

<1

-

- 0

- 0

0

 

 

 

 

very common very common very common very common very common very common very common

Skin and subcutaneous tissue disorders

Rash*** Pruritus Dry skin Alopecia

 

75

13

12

-

 

8

<1

0

-

 

<1

0

0

-

 

69

-

- 14

 

5

-

- 0

 

0

-

- 0

 

 

 

 

very common very common very common very common

General disorders and administration site conditions

Fatigue Pyrexia Rigors

 

52

-

-

 

14

-

-

 

4

-

-

 

73

36

12

 

14

3

0

 

2

0

0

 

 

 

 

very common very common very common

* Severe infections, with or without neutropenia, have included pneumonia, sepsis, and cellulitis.

 

** Can lead to dehydration, hypokalemia and renal failure.

*** Rash included dermatitis acneiform.

- corresponds to percentage below threshold.

Table 2: Summary of ADRs per frequency category:

 

 

Text Box: Body System	Very common (≥1/10)	Common
(≥1/100 to
<1/10)	Uncommon
(≥1/1,000 to
<1/100)	Rare
(≥1/10,000
to
<1/1,000)	Very rare
(<1/10,000)
Eye disorders		-Keratitis
-Conjunctivitis1	-Eyelash changes 2		-Corneal perforations
-Corneal ulcerations
-Uveitis
Respiratory, thoracic and mediastinal disorders		-Epistaxis	-Interstitial lung disease (ILD)3		
Gastro- intestinal disorders	-Diarrhoea7	-Gastro- intestinal bleeding4, 7	-Gastro- intestinal perforations7		
Hepato biliary disorders	-Liver function test abnormalities
5			-Hepatic failure 6	
Skin and subcutaneous tissue disorders	-Rash	-Alopecia
-Dry skin1
-Paronychia
-Folliculitis
-Acne/ Dermatitis acneiform
-Skin fissures	-Hirsutism
-Eyebrow changes
-Brittle and Loose nails
-Mild skin reactions such as hyperpigmen tation	-Palmar plantar erythrodys- aesthesia syndrome	-Stevens-Johnson syndrome/Toxic epidermal necrolysis7
Renal and urinary disorders		-Renal insufficiency1	-Nephritis1
-Proteinuria1

1 In clinical study PA.3.

2 Including in-growing eyelashes, excessive growth and thickening of the eyelashes.

3 Including fatalities, in patients receiving Tyrox for treatment of NSCLC or other advanced solid tumours (see section 4.4). A higher incidence has been observed in patients in Japan (see section 4.4).

4 In clinical studies, some cases have been associated with concomitant warfarin administration and some with concomitant NSAID administration (see section 4.5).

5 Including increased alanine aminotransferase [ALT], aspartate aminotransferase [AST] and bilirubin. These were very common in clinical study PA.3 and common in clinical study BR.21. Cases were mainly mild to moderate in severity, transient in nature or associated with liver metastases.

6 Including fatalities. Confounding factors included pre-existing liver disease or concomitant hepatotoxic medications (see section 4.4).

7 Including fatalities (see section 4.4).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

 

To report any side effect(s):

  • Saudi Arabia:

-          National Pharmacovigilance & Drug Safety Centre (NPC):

·         Fax: +966-11-205-7662

·         Call NPC at +966-11-2038222, Ext. 2317-2356-2353-2354-2334-2340.

·         Toll free phone: 19999

·         E-mail: npc.drug@sfda.gov.sa

·         Website: www.sfda.gov.sa/npc

 


Symptoms

Single oral doses of Tyrox up to 1000 mg erlotinib in healthy subjects, and up to 1600 mg in cancer patients have been tolerated. Repeated twice daily doses of 200 mg in healthy subjects were poorly tolerated after only a few days of dosing. Based on the data from these studies, severe adverse reactions such as diarrhoea, rash and possibly increased activity of liver aminotransferases may occur above the recommended dose.

 

Management

In case of suspected overdose, Tyrox should be withheld and symptomatic treatment initiated.

 


Pharmacotherapeutic group: antineoplastic agent protein kinase inhibitor, ATC code: L01XE03

 

 

 

Mechanism of action

 

Erlotinib is an epidermal growth factor receptor/human epidermal growth factor receptor type 1 (EGFR also known as HER1) tyrosine kinase inhibitor. Erlotinib potently inhibits the intracellular phosphorylation of EGFR. EGFR is expressed on the cell surface of normal cells and cancer cells. In non-clinical models, inhibition of EGFR phosphotyrosine results in cell stasis and/or death.

 

EGFR mutations may lead to constitutive activation of anti-apoptotic and proliferation signaling pathways. The potent effectiveness of erlotinib in blocking EGFR-mediated signalling in these EGFR mutation positive tumours is attributed to the tight binding of erlotinib to the ATP-binding site in the mutated kinase domain of the EGFR. Due to the blocking of downstream-signaling, the proliferation of cells is stopped, and cell death is induced through the intrinsic apoptotic pathway. Tumour regression is observed in mouse models of enforced expression of these EGFR activating mutations.

 

Clinical efficacy

 

- First-line Non-Small Cell Lung Cancer (NSCLC) therapy for patients with EGFR activating mutations (Tyrox administered as monotherapy):

 

The efficacy of Tyrox in first-line treatment of patients with EGFR activating mutations in NSCLC was demonstrated in a phase III, randomised, open-label trial (ML20650, EURTAC). This study was conducted in Caucasian patients with metastatic or locally advanced NSCLC (stage IIIB and IV) who have not received previous chemotherapy or any systemic antitumour therapy for their advanced disease and who present mutations in the tyrosine kinase domain of the EGFR (exon 19 deletion or exon 21 mutation). Patients were randomised 1:1 to receive Tyrox 150 mg daily or up to 4 cycles of platinum based doublet chemotherapy.

 

The primary endpoint was investigator assessed PFS. The efficacy results are summarized in Table 3.

 

Figure 1: Kaplan-Meier curve for investigator assessed PFS in trial ML20650 (EURTAC) (April 2012 cut-off)

 

 

Table 3: Efficacy results of Tyrox versus chemotherapy in trial ML20650 (EURTAC)

 

 

 

Tyrox

Chemo- therapy

Hazard Ratio (95% CI)

p-value

Pre-planned Interim Analysis (35% OS

maturity) (n=153)

 

Cut-off date: Aug 2010

 

n=77

n=76

 

 

Primary endpoint: Progression Free Survival (PFS, median in months)* Investigator Assessed **

 

Independent Review **

 

9.4

 

10.4

 

5.2

 

5.4

 

0.42

[0.27-0.64]

0.47

[0.27-0.78]

 

p<0.0001

 

p=0.003

Best Overall Response Rate (CR/PR)

54.5%

10.5%

 

p<0.0001

Overall Survival (OS) (months)

22.9

18.8

0.80

[0.47-1.37]

p=0.4170

Exploratory Analysis (40% OS

maturity) (n=173)

 

Cut-off date: Jan 2011

 

n=86

n=87

 

 

PFS (median in months), Investigator assessed

9.7

5.2

0.37

[0.27-0.54]

p<0.0001

Best Overall Response Rate (CR/PR)

58.1%

14.9%

 

p<0.0001

OS (months)

19.3

19.5

1.04

[0.65-1.68]

p=0.8702

Updated Analysis (62% OS

maturity) (n=173)

 

Cut-off date: April 2012

 

n=86

n=87

 

 

PFS (median in months)

10.4

5.1

0.34

[0.23-0.49]

p<0.0001

 

OS*** (months)

22.9

20.8

0.93

[0.64-1.36]

 

p=0.7149

CR=complete response; PR=partial response

* A 58% reduction in the risk of disease progression or death was observed

** Overall concordance rate between investigator and IRC assessment was 70%

*** A high crossover was observed with 82% of the patients in the chemotherapy arm receiving subsequent therapy with an EGFR tyrosine kinase inhibitor and all but 2 of those patients had subsequent Tyrox.

 

- Maintenance NSCLC therapy after first-line chemotherapy (Tyrox administered as monotherapy):

 

The efficacy and safety of Tyrox as maintenance after first-line chemotherapy for NSCLC was investigated in a randomised, double-blind, placebo-controlled trial (BO18192, SATURN). This study was conducted in 889 patients with locally advanced or metastatic NSCLC who did not progress after 4 cycles of platinum-based doublet chemotherapy. Patients were randomised 1:1 to receive Tyrox 150 mg or placebo orally once daily until disease progression. The primary endpoint of the study included progression free survival (PFS) in all patients. Baseline demographic and disease characteristics were well balanced between the two treatment arms. Patients with ECOG PS>1, significant hepatic or renal co-morbidities were not included in the study.

 

In this study, the overall population showed a benefit for the primary PFS end-point (HR= 0.71 p< 0.0001) and the secondary OS end-point (HR= 0.81 p=0.0088). However the largest benefit was observed in a predefined exploratory analysis in patients with EGFR activating mutations (n= 49) demonstrating a substantial PFS benefit (HR=0.10, 95% CI, 0.04 to 0.25; p<0.0001) and an overall survival HR of 0.83 (95% CI, 0.34 to 2.02). 67% of placebo patients in the EGFR mutation positive subgroup received second or further line treatment with EGFR-TKIs.

 

The BO25460 (IUNO) study was conducted in 643 patients with advanced NSCLC whose tumors did not harbor an EGFR-activating mutation (exon 19 deletion or exon 21 L858R mutation) and who had not experienced disease progression after four cycles of platinum-based chemotherapy.

 

The objective of the study was to compare the overall survival of first line maintenance therapy with erlotinib versus erlotinib administered at the time of disease progression. The study did not meet its primary endpoint. OS of Tyrox in first line maintenance was not superior to Tyrox as second line treatment in patients whose tumor did not harbor an EGFR-activating mutation (HR= 1.02, 95% CI, 0.85 to 1.22, p=0.82). The secondary endpoint of PFS showed no difference between Tyrox and placebo in maintenance treatment (HR=0.94, 95 % CI, 0.80 to 1.11; p=0.48).

 

Based on the data from the BO25460 (IUNO) study, Tyrox use is not recommended for first-line maintenance treatment in patients without an EGFR activating mutation.

 

- NSCLC treatment after failure of at least one prior chemotherapy regimen (Tyrox administered as monotherapy)

 

The efficacy and safety of Tyrox as second/third-line therapy was demonstrated in a randomised, double-blind, placebo-controlled trial (BR.21), in 731 patients with locally advanced or metastatic NSCLC after failure of at least one chemotherapy regimen. Patients were randomised 2:1 to receive Tyrox 150 mg or placebo orally once daily. Study endpoints included overall survival, progression-free survival (PFS), response rate, duration of response, time to deterioration of lung cancer-related symptoms (cough, dyspnoea and pain), and safety. The primary endpoint was survival.

 

Demographic characteristics were well balanced between the two treatment groups. About two-thirds of the patients were male and approximately one-third had a baseline ECOG performance status (PS) of 2, and 9% had a baseline ECOG PS of 3. Ninety-three percent and 92% of all patients in the Tyrox and placebo groups, respectively, had received a prior platinum-containing regimen and 36% and 37% of all patients, respectively, had received a prior taxane therapy.

 

The adjusted hazard ratio (HR) for death in the Tyrox group relative to the placebo group was 0.73 (95% CI, 0.60 to 0.87) (p = 0.001). The percent of patients alive at 12 months was 31.2% and 21.5%, for the Tyrox and placebo groups, respectively. The median overall survival was 6.7 months in the Tyrox group (95% CI, 5.5 to 7.8 months) compared with 4.7 months in the placebo group (95% CI, 4.1 to 6.3 months).

 

The effect on overall survival was explored across different patient subsets. The effect of Tyrox on overall survival was similar in patients with a baseline performance status (ECOG) of 2-3 (HR = 0.77, 95% CI 0.6-1.0) or 0-1 (HR = 0.73, 95% CI 0.6-0.9), male (HR = 0.76, 95% CI 0.6-0.9) or female patients (HR = 0.80, 95% CI 0.6-1.1), patients < 65 years of age (HR = 0.75, 95% CI 0.6-0.9) or older patients (HR = 0.79, 95% CI 0.6-1.0), patients with one prior regimen (HR = 0.76, 95% CI 0.6-1.0) or more than one prior regimen (HR = 0.75, 95% CI 0.6-1.0), Caucasian (HR = 0.79, 95% CI 0.6-1.0) or Asian patients (HR = 0.61, 95% CI 0.4-1.0), patients with adenocarcinoma (HR = 0.71, 95% CI 0.6-0.9) or squamous cell carcinoma (HR = 0.67, 95% CI 0.5-0.9), but not in patients with other histologies (HR 1.04, 95% CI 0.7-1.5), patients with stage IV disease at diagnosis (HR = 0.92, 95% CI 0.7-1.2) or < stage IV disease at diagnosis (HR = 0.65, 95% CI 0.5-0.8). Patients who never smoked had a much greater benefit from erlotinib (survival HR = 0.42, 95% CI 0.28-0.64) compared with current or ex-smokers (HR = 0.87, 95% CI 0.71-1.05).

 

In the 45% of patients with known EGFR-expression status, the hazard ratio was 0.68 (95% CI 0.49-0.94) for patients with EGFR-positive tumours and 0.93 (95% CI 0.63-1.36) for patients with EGFR-negative tumours (defined by IHC using EGFR pharmDx kit and defining EGFR-negative as less than 10% tumour cells staining). In the remaining 55% of patients with unknown EGFR-expression status, the hazard ratio was 0.77 (95% CI 0.61-0.98).

 

The median PFS was 9.7 weeks in the Tyrox group (95% CI, 8.4 to 12.4 weeks) compared with 8.0 weeks in the placebo group (95% CI, 7.9 to 8.1 weeks).

 

The objective response rate by RECIST in the Tyrox group was 8.9% (95% CI, 6.4 to 12.0).

 

The first 330 patients were centrally assessed (response rate 6.2%); 401 patients were investigator-assessed (response rate 11.2%).

 

The median duration of response was 34.3 weeks, ranging from 9.7 to 57.6+ weeks. The proportion of patients who experienced complete response, partial response or stable disease was 44.0% and 27.5%, respectively, for the Tyrox and placebo groups (p = 0.004).

 

A survival benefit of Tyrox was also observed in patients who did not achieve an objective tumour response (by RECIST). This was evidenced by a hazard ratio for death of 0.82 (95% CI, 0.68 to 0.99) among patients whose best response was stable disease or progressive disease.

 

Tyrox resulted in symptom benefits by significantly prolonging time to deterioration in cough, dyspnoea and pain, versus placebo.

 

In a double-blind, randomised phase III study (MO22162, CURRENTS) comparing two doses of Tyrox (300 mg versus 150 mg) in current smokers (mean of 38 pack years) with locally advanced or metastatic NSCLC in the second-line setting after failure on chemotherapy, the 300 mg dose of Tyrox demonstrated no PFS benefit over the recommended dose (7.00 vs 6.86 weeks, respectively).

 

Secondary efficacy endpoints were all consistent with the primary endpoint and no difference was detected for OS between patients treated with erlotinib 300 mg and 150 mg daily (HR 1.03, 95% CI 0.80 to 1.32). Safety data were comparable between the 300 mg and 150 mg doses; however, there was a numerical increase in the incidence of rash, interstitial lung disease and diarrhoea, in patients receiving the higher dose of erlotinib. Based on the data from the CURRENTS study, no evidence was seen for any benefit of a higher erlotinib dose of 300 mg when compared with the recommended dose of 150 mg in active smokers.

 

Patients in this study were not selected based on EGFR mutation status. See sections 4.2, 4.4, 4.5, and 5.2.

 

-Pancreatic cancer (Tyrox administered concurrently with gemcitabine in study PA.3).

 

The efficacy and safety of Tyrox in combination with gemcitabine as a first-line treatment was assessed in a randomised, double-blind, placebo-controlled trial in patients with locally advanced, unresectable or metastatic pancreatic cancer. Patients were randomised to receive Tyrox or placebo once daily on a continuous schedule plus gemcitabine IV (1000 mg/m2, Cycle 1 - Days 1, 8, 15, 22, 29, 36 and 43 of an 8 week cycle; Cycle 2 and subsequent cycles - Days 1, 8 and 15 of a 4 week cycle [approved dose and schedule for pancreatic cancer, see the gemcitabine SPC]). Tyrox or placebo was taken orally once daily until disease progression or unacceptable toxicity. The primary endpoint was overall survival.

 

Baseline demographic and disease characteristics of the patients were similar between the 2 treatment groups, 100 mg Tyrox plus gemcitabine or placebo plus gemcitabine, except for a slightly larger proportion of females in the erlotinib/gemcitabine arm compared with the placebo/gemcitabine arm:

 

Baseline

Tyrox

Placebo

Females

51%

44%

Baseline ECOG performance status (PS) = 0

31%

32%

Baseline ECOG performance status (PS) = 1

51%

51%

Baseline ECOG performance status (PS) = 2

17%

17%

Metastatic disease at baseline

77%

76%

 

Survival was evaluated in the intent-to-treat population based on follow-up survival data. Results are shown in the table below (results for the group of metastatic and locally advanced patients are derived from exploratory subgroup analysis).

 

 

Outcome

Tyrox (months)

Placebo (months)

(months)

 

CI of 

 

HR

CI of HR

P-

value

Overall Population

Median overall survival

6.4

6.0

0.41

-0.54-1.64

0.82

0.69-0.98

0.028

Mean overall survival

8.8

7.6

1.16

-0.05-2.34

Metastatic Population

Median overall survival

5.9

5.1

0.87

-0.26-1.56

0.80

0.66-0.98

0.029

Mean overall survival

8.1

6.7

1.43

0.17-2.66

Locally Advanced Population

Median overall survival

8.5

8.2

0.36

-2.43-2.96

0.93

0.65-1.35

0.713

Mean overall survival

10.7

10.5

0.19

-2.43-2.69

 

 

In a post-hoc analysis, patients with favourable clinical status at baseline (low pain intensity, good QoL and good PS) may derive more benefit from Tyrox. The benefit is mostly driven by the presence of a low pain intensity score.

In a post-hoc analysis, patients on Tyrox who developed a rash had a longer overall survival compared to patients who did not develop rash (median OS 7.2 months vs 5 months, HR:0.61).

90% of patients on Tyrox developed rash within the first 44 days. The median time to onset of rash was 10 days.

Paediatric population

 

The European Medicines Agency has waived the obligation to submit the results of studies with Tyrox in all subsets of the paediatric population in Non Small Cell Lung Cancer and Pancreatic cancer indications (see section 4.2 for information on paediatric use).

 


Absorption

 

After oral administration, erlotinib peak plasma levels are obtained in approximately 4 hours after oral dosing. A study in normal healthy volunteers provided an estimate of the absolute bioavailability of 59%. The exposure after an oral dose may be increased by food.

 

 

Distribution

 

Erlotinib has a mean apparent volume of distribution of 232 l and distributes into tumour tissue of humans. In a study of 4 patients (3 with non-small cell lung cancer [NSCLC], and 1 with laryngeal cancer) receiving 150 mg daily oral doses of Tyrox, tumour samples from surgical excisions on Day 9 of treatment revealed tumour concentrations of erlotinib that averaged 1185 ng/g of tissue. This corresponded to an overall average of 63% (range 5-161%) of the steady state observed peak plasma concentrations. The primary active metabolites were present in tumour at concentrations averaging 160 ng/g tissue, which corresponded to an overall average of 113% (range 88-130%) of the observed steady state peak plasma concentrations. Plasma protein binding is approximately 95%. Erlotinib binds to serum albumin and alpha-1 acid glycoprotein (AAG).

 

Biotransformation

 

Erlotinib is metabolised in the liver by the hepatic cytochromes in humans, primarily CYP3A4 and to a lesser extent by CYP1A2. Extrahepatic metabolism by CYP3A4 in intestine, CYP1A1 in lung, and 1B1 in tumour tissue potentially contribute to the metabolic clearance of erlotinib.

There are three main metabolic pathways identified: 1) O-demethylation of either side chain or both, followed by oxidation to the carboxylic acids; 2) oxidation of the acetylene moiety followed by hydrolysis to the aryl carboxylic acid; and 3) aromatic hydroxylation of the phenyl-acetylene moiety. The primary metabolites OSI-420 and OSI-413 of erlotinib produced by O-demethylation of either side chain have comparable potency to erlotinib in non-clinical in vitro assays and in vivo tumour models. They are present in plasma at levels that are <10% of erlotinib and display similar pharmacokinetics as erlotinib.

 

Elimination

 

Erlotinib is excreted predominantly as metabolites via the faeces (>90%) with renal elimination accounting for only a small amount (approximately 9%) of an oral dose. Less than 2% of the orally administered dose is excreted as parent substance. A population pharmacokinetic analysis in 591 patients receiving single agent Tyrox shows a mean apparent clearance of 4.47 l/hour with a median half-life of 36.2 hours. Therefore, the time to reach steady state plasma concentration would be expected to occur in approximately 7-8 days.

 

Pharmacokinetics in special populations

 

Based on population pharmacokinetic analysis, no clinically significant relationship between predicted apparent clearance and patient age, bodyweight, gender and ethnicity were observed. Patient factors, which correlated with erlotinib pharmacokinetics, were serum total bilirubin, AAG and current smoking. Increased serum concentrations of total bilirubin and AAG concentrations were associated with a reduced erlotinib clearance. The clinical relevance of these differences is unclear. However, smokers had an increased rate of erlotinib clearance. This was confirmed in a pharmacokinetic study in non-smoking and currently cigarette smoking healthy subjects receiving a single oral dose of 150 mg erlotinib. The geometric mean of the Cmax was 1056 ng/mL in the non-smokers and 689 ng/mL in the smokers with a mean ratio for smokers to non-smokers of 65.2% (95% CI: 44.3 to 95.9, p = 0.031). The geometric mean of the AUC0-inf was 18726 ng•h/mL in the non-smokers and 6718 ng•h/mL in the smokers with a mean ratio of 35.9% (95% CI: 23.7 to 54.3, p < 0.0001). The geometric mean of the C24h was 288 ng/mL in the non-smokers and 34.8 ng/mL in the smokers with a mean ratio of 12.1% (95% CI: 4.82 to 30.2, p = 0.0001). In the pivotal Phase III NSCLC trial, current smokers achieved erlotinib steady state trough plasma concentration of 0.65 μg/mL (n=16) which was approximately 2-fold less than the former smokers or patients who had never smoked (1.28 μg/mL, n=108). This effect was accompanied by a 24% increase in apparent erlotinib plasma clearance. In a phase I dose escalation study in NSCLC patients who were current smokers, pharmacokinetic analyses at steady-state indicated a dose proportional increase in erlotinib exposure when the Tyrox dose was increased from 150 mg to the maximum tolerated dose of 300 mg. Steady-state trough plasma concentrations at a 300 mg dose in current smokers in this study was 1.22 μg/mL (n=17). See sections 4.2, 4.4, 4.5 and 5.1.

 

Based on the results of pharmacokinetic studies, current smokers should be advised to stop smoking while taking Tyrox, as plasma concentrations could be reduced otherwise.

 

Based on population pharmacokinetic analysis, the presence of an opioid appeared to increase exposure by about 11%.

 

A second population pharmacokinetic analysis was conducted that incorporated erlotinib data from 204 pancreatic cancer patients who received erlotinib plus gemcitabine. This analysis demonstrated that covariants affecting erlotinib clearance in patients from the pancreatic study were very similar to those seen in the prior single agent pharmacokinetic analysis. No new covariate effects were identified. Co-administration of gemcitabine had no effect on erlotinib plasma clearance.

 

Paediatric population

 

There have been no specific studies in paediatric patients.

 

Elderly population

There have been no specific studies in elderly patients.

 

Hepatic impairment

 

Erlotinib is primarily cleared by the liver. In patients with solid tumours and with moderately impaired hepatic function (Child-Pugh score 7-9), geometric mean erlotinib AUC0-t and Cmax was 27000 ng•h/mL and 805 ng/mL, respectively, as compared to 29300 ng•h/mL and 1090 ng/mL in patients with adequate hepatic function including patients with primary liver cancer or hepatic metastases. Although the Cmax was statistically significant lower in moderately hepatic impaired patients, this difference is not considered clinically relevant. No data are available regarding the influence of severe hepatic dysfunction on the pharmacokinetics of erlotinib. In population pharmacokinetic analysis, increased serum concentrations of total bilirubin were associated with a slower rate of erlotinib clearance.

 

 

 

 

Renal impairment

 

Erlotinib and its metabolites are not significantly excreted by the kidney, as less than 9% of a single dose is excreted in the urine. In population pharmacokinetic analysis, no clinically significant relationship was observed between erlotinib clearance and creatinine clearance, but there are no data available for patients with creatinine clearance <15 ml/min.


Chronic dosing effects observed in at least one animal species or study included effects on the cornea (atrophy, ulceration), skin (follicular degeneration and inflammation, redness, and alopecia), ovary (atrophy), liver (liver necrosis), kidney (renal papillary necrosis and tubular dilatation), and gastrointestinal tract (delayed gastric emptying and diarrhoea). Red blood cell parameters were decreased and white blood cells, primarily neutrophils, were increased. There were treatment-related increases in ALT, AST and bilirubin. These findings were observed at exposures well below clinically relevant exposures.

 

Based on the mode of action, erlotinib has the potential to be a teratogen. Data from reproductive toxicology tests in rats and rabbits at doses near the maximum tolerated dose and/or maternally toxic doses showed reproductive (embryotoxicity in rats, embryo resorption and foetotoxicity in rabbits) and developmental (decrease in pup growth and survival in rats) toxicity, but was not teratogenic and did not impair fertility. These findings were observed at clinically relevant exposures.

 

Erlotinib tested negative in conventional genotoxicity studies. Two-year carcinogenicity studies with erlotinib conducted in rats and mice were negative up to exposures exceeding human therapeutic exposure (up to 2-fold and 10-fold higher, respectively, based on Cmax and/or AUC).

 

A mild phototoxic skin reaction was observed in rats after UV irradiation.


 

Tablet core

Lactose monohydrate

Cellulose, microcrystalline (E460)

Sodium starch glycolate Type A

Magnesium stearate (E470 b)

Isopropyl alcohol

 

Tablet coat

Poly (vinyl alcohol)  (E1203)

Titanium dioxide (E171) 21

Macrogol 3350 (E1521)

Talc (E553b)

Methyacrylic acid-ethyl acrylate copolymer (1:1) type A

Sodium Hydrogen carbonate


Not applicable.


24 Months

Store below 30°C


PVC blister sealed with aluminium foil containing 30 tablets.


No special requirements for disposal.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

 


MS Pharma Saudi, Riyadh, Kingdome Saudi Arabia. medical-ksa@mspharma.com

Feb/2020
}

صورة المنتج على الرف

الصورة الاساسية